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ABSTRACT: In this work, we propose a general method of a nonlinear control system by
fuzzy supervision of a conventional control.  This approach belongs to the class of methods
based on the use of the linearized system. The particularity of this work lies in the proposed
algorithms to realize the parametric adaptation of control law and running equilibrium
estimation. These two aspects have been solved by the use of a fuzzy supervisor based on a
Takagi-Sugeno rules. The rules bases are built by the knowledge of  the gains and the
equilibrium, for a fixed number of operating points. The gains are calculated using a local
synthesis by poles placement. The implementation of this method is presented on a real
example for which a generator of reference trajectory is presented.  The results available
are compared with the ones obtained by use of Isidori linearizing control method and lead
to the validation of this method. Copyright © 2000 IFAC.
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1. INTRODUCTION

The modeling of a real system practically always
leads to a nonlinear model.  When the operating
range of the system is restricted, the use of a
linearized model around an equilibrium point is
sufficient to carry out the synthesis of a control law
(D’Andrea-Novel, 1994). This approach is not
possible when the system evolves on a large
operating range. In the following it is assumed that
the knowledge of one linearized model around an
equilibrium point is not sufficient to satisfy the
control objectives. To overcome this difficulty,
several linearized models around various operating
points are used.

The problem is then the adaptation of the control law
according to the current equilibrium point. In the
next we proposes a simple technique of the
parameters adaptation of the control law based on a
combined approach using the conventional control
techniques and fuzzy control. This combined
approach allows the development of a two-levels
structure: a system level in which acts the control law
and a supervision level allowing to adapt the
parameters of the control according to the operating
conditions. With the same objective, the Tanaka
approach consists in building a fuzzy model of the
system and a fuzzy control law by state feedback.
This approach carries out an interpolation of the
control laws but not of the parameters.



However, this control law is locally linear and
function of current equilibrium.  To ensure the
stability of the closed-loop system, Tanaka (Tanaka
and al. 1998) proposes to use a Lyapunov approach
leading to the resolution of linear matrix inequalities
(LMI). Compared to the approach suggested here,
the  Tanaka method also requires an estimate of the
current equilibrium point. However the calculations
are more complex and do not allow to determine the
matrix of gain in order to impose the predefined
performances on the closed-loop system. See also the
works of Kuipers and Aström (1994) allowing
commutation between various control laws according
to the operating range in which the system evolves.
A control law is associated at each operating range
and characterized by a membership function.  The
control applied to the system results from a weighted
average of the various control laws.  But the authors
underline the very delicate theoretical analysis of this
structure. This approach to fuzzy control was
pioneered by Takagi and Sugeno (1985) and Sugeno
and Kang (1986).

The work presented here is divided into four
sections.  The first section introduces the concept of
supervised system. The role of the various
components are outlined. In the second section, the
general structure of a fuzzy supervisor control is
presented. The core of this unit:  the fuzzy inference
system (FIS) is briefly reviewed. In the third section
a general method of fuzzy supervised control of a
nonlinear system on a large operating range is
proposed. In the fourth section an application
concerning the control by the inductor of a D.C.
current machine fed in voltage is presented.  For this
system, a generator reference trajectory is briefly
presented.  The performances of the supervised
control will be then compared with the results
obtained using a linearizing control of Isidori. The
results available are compared with the ones obtained
by use of Isidori linearized method and lead to the
validation of this method.

2. GENERAL STRUCTURE OF A SUPERVISED
SYSTEM

The general structure of a supervised system is
presented on figure 1. This structure shows two
levels.  A level system, or level 0, whose role is
primarily to generate the control law applied to the
process in order to satisfy the control objectives.   A
higher level, called level 1, whose role is the
decision-making from the measures issued from
level 0.  More precisely, the task of level 1 is ensured
by a supervisor, consisting of an observation function
Γ of the level 0 and a decision-making function Ψ,
allowing to act on level 0. The role of the
observation function Γ  is to generate, from the
variable of level 0, information on the behavior of
the closed-loop system. The nature of this
information is related to the goals to reach.
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Fig. 1. General structure of a supervised system.

For example, if the aim is the conformity of the
closed-loop system with a model of behavior, the
function of observation generates a variation of this
behavior.  If if the aim is the diagnosis of failures, the
observation function generates indicators of defects
on the elements of the system.  Usually, observation
function generate all informations useful for the
decision-making function. The data generated by the
observation function are then processed by the
decision-making function which generates the correct
actions necessary for the satisfaction of the
objectives.  In the next, the correct actions
undertaken are the parametric adaptation of the
control law in order to satisfy the control objectives
on a large operating range.  Figure 2 gives the
general constitution of the fuzzy supervisor used in
the following.  The function of decision-making is
fulfilled here by a fuzzy inference system (FIS).
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Fig. 2. Structure of a decision-making function.

Generally, the FIS is composed of four main blocks:
a knowledge base, an interface of fuzzification, a unit
of decision-making and an interface of
defuzzification.  For a more detailed study consult in
particular (Foulloy, 1994; Driankov, 1996; Lee,
1990). Many examples of applications are found in
the collective works (Sugeno, 1992; Kandel, 1994).
The rules base of the FIS is a list of fuzzy conditional
clauses.  In the work which follows, only rules of the
Takagi-Sugeno type are used.  The rules base is
written below:
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Where l is the total number of rules, ~ai
p  are the fuzzy

subset associated to the input variable xi .



The fuzzy subset ~ai
p  are defined using memberships

functions noted µ~ ( )
ai

p xi
. The data base contains all

the parameters of the membership functions. In the
next, the fuzzy subset ~ai

p  is defined using triangular
membership functions. The output vector y is then
calculated by the following relation:
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3. PRINCIPLE OF THE METHODE

Figure 3 gives the general schem of a nonlinear
control system, where u is the control vector, z is the
state vector of the system, v is the state vector of the
integrators intended to cancel the steady state error
between the reference vector r and output w.

 z = f(z,u)
 w = h(z)

u ∈ Rm

-

+ v ∈ Rq

z ∈ Rn

r
w ∈Rq

 ϕ(z,v)
⌠
⌡

Fig. 3. Structure for the nonlinear control system.

The reference vector is assumed constant or slowly
variable. ϕ is an unknown function used to generate
the control from the state system and the integral of
the error. The closed-loop system is then given by
the following equations :
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The problem of the synthesis of ϕ in a nonlinear
context is difficult. However, it is  possible to search
ϕ locally by considering its linearized on the
equilibrium space. The control law is then given by :
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Note that v0 can be taken equal to zero because it do
not appear in the equilibrium conditions. The control
law thus built is used to make evolve the system
along the equilibrium tajectories defined by the
equations (5). The system can be then represented by
its linearized model. The parameters of the linearized
model are functions of the current equilibrium point.

The linearized model of the closed-loop system is
written:
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with z z z* = − 0
 and u u u* = − 0

, w0
 is the desired

output at the equilibrium, that is w r0 = . Let use
consider:
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the linearized system is then writen :
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Kz  and Kv  are the gains matrices of the control law
by state feedback, functions of the current
equilibrium. These gains will be calculated in order
to impose on the closed loop system a dynamic
evolution compatible with the desired performances.
The caracteristic polynomial of the closed-loop
process is identified to a damping polynomial chosen
in order to impose to the closed-loop system the
desired performances. This requires the resolution of
a system with n+q nonlinear equations for
determining Kz and Kv according to the current
equilibrium point ( , )z u0 0

. Instead of searching a
continuous solution for Kz and Kv, it is possible to
discretize the problem in a finished number p of
operating points (p = 1...l) and search Kz and Kv for
each equilibrium points ( , )z up p

0 0 . At this stage, the
parameters of a control law are known for each
predefined equilibrium points. The problem is then
the parametric adaptation of the control law
according to the current equilibrium which varies
when the system evolves. The use of a fuzzy
supervisor makes it possible to achieve this
objective. The objective is to realize the parametric
adaptation of the control law according to the current
equilibrium ( , )z u0 0

 knowing this in a finished
number of operating points ( , )z up p

0 0
. The input of the

decision-making function is then the current
equilibrium, and the outputs are the parameters of the



control law, that is the gains matrices Kz
. The

linguistic rule used to reach the aim is then written:

If the curent equilibrium is one of the predefined
operating point Then the gains are those calculated

for the corresponding predefined equilibrium.

the linked Takagi-Sugeno rules are then writen:
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where K is the output of the decision-making
function representing the gains of the control law,
Kz

p  and Kv
p  are the matrix gains calculated for the l

predefined equilibrium points. The zi0, with i n=1… ,
are the components of z0, and uj0, with j m= 1… , are
the components of u0. The ~zi

p

0
 (components of ~Z p

)
are fuzzy numbers whose modal value zi

p

0
 is defined

in order to realize a fuzzy partition of the interval
[( ) , ( ) ]z zi

p

i

p

0 0min max
, i.e. :

[ ]µ~ ( ) ( ) , ( )
zi

p z z z zi
p

l

i i
p

i
p

0
0

1
0 0 01= ∀ ∈

=
∑     min max

      (11)

In this relation ( )zi

p

0 min
 and ( )zi

p

0 max
 indicate,

respectively largest and smallest value of zi

p

0
. In the

same way, ~u j

p

0
 (components of ~U p

) are fuzzy

numbers whose modal values uj

p

0
 are defined in order

to realize a fuzzy partition of the interval
[( ) , ( ) ]u uj

p

j

p

0 0min max
, i.e.  :

[ ]µ~ ( ) ( ) , ( )
u j

p

l

j j
p

j
p

j
p u u u u
0

0
1

0 0 01= ∀ ∈
=

∑     min max
     (12)

The gains used in the control law are calculated with
the relation (2) which is written, in our case, in the
following way:
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where ( ( ), ( ))z t u t0 0
 is the evaluation of the equilibrium

at time t. The application of this relation thus
requires an evaluation of the current equilibrium.
This can be carried out, in a continuous way, using
the equilibrium conditions, which is not necessarily
simple.  Another solution is, like previously, to
discretize the problem and thus to consider the p
operating points ( , )z up p

0 0
 previously used. The

problem is then to estimate the current equilibrium
according to a variable to be defined. The output
corresponding to the equilibrium ( , )z up p

0 0
 is

h z wp p( )0 0= . The presence of the integrator leads to

w rp

0 = . The equilibrium estimation can be then
realized from current reference, assuming slow
variation which is one of the limitation of this
method. However in many applications, the reference
step is not applied directly to the process but is used
to generate a reference trajectory, which avoid to
solicit unnecessarily the actuators. The input of the
observation function is thus the current reference and
the output the current equilibrium. The linguistic rule
used to realize this estimation is:

If the current reference is one the output at the
equilibrium Then the current equilibrium is the

corresponding predefined equilibrium.

The linked Takagi-Sugeno rules, are then writen:

( ) ( )
[ ] [ ]
[ ] [ ]

[ ] [ ]

R r z z u u p l

z z z z z z

u u u u u u

r r r

p p p p

n

T

p
p

n
p T

m p
p

m
p T

q

T

p
p

q
p

T

 :  If  is  Then ;    0 0

0

0

~ ...

;

;

; ~ ~ ~

W

W

= = =

= =

= =

= =

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

1

10 0 10 0

10 0 10 0

1 10 0

" "

" "

" "w w

   (16)

In the relation (16),  r is the input of the observation
function representing the current reference. The rk 0 ,
with k q= 1… , are the components of  the reference
vector assumed constant or with slow variation. The
fuzzy subsets ~wk
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The estimate of the current equilibrium used in the
control law, is obtained using the relation (2):
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Where  r(t) is the reference vector at time t. Notice
that the equilibrium thus determined represents, for r
variable, the equilibrium reached. The system
evolves then gradually along the equilibrium
trajectories. When r is constant, the equality between
the reference and the output is ensured by the
presence of the integrators. The reference vector r
must evolve slowly so that the estimate remains
valid. In practice, if the reference are the steps, those
will be softened by the introduction of a generator of
reference trajectory.

4. APPLICATION OF THE METHOD TO THE
CONTROL OF A D.C. MOTOR

The objective is to realize an angular speed feedback
with control by the stator current. The motor is
assumed fed by a constant armature voltage. This
type of control (control by the inductor with free
evolution of the rotor current) is the most economic
in term of the electronic power because the stator
current is very weak in front of the rotor current.
The modeling of this system, for a current stator
control, leads to a following nonlinear state model:
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In the relation (20), k is the constant of couple, Rr
rotor resistance, Lr rotor inductance, ir the rotor
current, ur the rotor voltage maintained constant, ω
the rotational speed of the rotor, Rs stator resistance,
Ls stator inductance, is the stator current which is the
control variable of the system. The equilibrium
points of the system are given taking equal to zero
the derivative of the state vector in (20). The
linearized model around an equilibrium point is then
given by:
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The control law adopted here is:
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The caracteristic polynomial of the closed-loop
system with a control law (23) is to be identified with
the desired caracteristic polynomial allowing to
impose desired performances. We now apply the
fuzzy supervised control presented above so as to
make evolve the system in the speed range 0 to 600
rad/s around 620 rad/s. The stator current varies then
in the interval [0.2, 0.4 A]. For the operating point

defined by is0
1 0 4= .  A  et is0

2 0 2= .  A , the feedback gains
are:
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The rules base allowing the modification of the
feedback gains between these two point are:
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The fuzzy subset ~is0
1 et ~is0

2   are defined on figure 7.
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The rules base adopted for the equilibrium estimation
are:
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wehre ω0ref  is the output of the reference generator
trajectory. The definitions adopted for the fuzzy
subsets ~ω0

1, ~ω0
2  et ~ω0

3 are presented in the figure 8.

4. 1. Generation of a reference trajectory

The objective here is double. The first objective is to
generate reference speed slowly variable in order to
insure the validity of the presented method. The
second objective is to respect the maximum current
irmax admissible by the machine. Indeed, this current
can take very important values in transient state if no
particular precautions are taken. Note that this
objective must be respected whatever the control
method used. The generator of reference trajectory
corresponding to a constant acceleration is written:
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where γ represents the acceleration, T is the time
necessary for an evolution of the system from initial
speed ω0, value under steady conditions, to a final
speed ωref, defined by the reference. The maximum
rotor current irmax admissible in transient state is
137,5A, the minimal stator current is 0,1A, for a



maximum rotational speed of 2500rd/s. This leads to
adopt γ = 300 2rd s/  and T = 2s.

4.2. Comparison with a linearizing control

The linearizing control is a nonlinear control technic
based on a change of coordinates allowing to
linearize the system (Isidori 1989, Isidori 1995). The
application of this method to our system leads to the
following linearizing control law:
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where the parameters k0 and k1 are determined in
manner to obtain the desired dynamic performances.
By adopting identical performances to those defined
by (24), we obtain: k k0 113 3= =,2; ,6 . The
recordings presented on figures 9 and 10 compare,
for various amplitudes of the step reference, the
results obtained for a supervised and linearizing
control law. The step reference is not applied directly
to the system, but is used to generate the reference
trajectory in accordance with the relations (28),  in
order to not exceed the maximum rotor current
admissible by the machine. According to figures 9
and 10, it is clear that the dynamic performances of
the supervised system are preserved, which is also
the case, obviously, with the linearizing control. The
performances obtained by the fuzzy supervision
technique are equivalent to the linearisante control.
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Fig. 9. Response to a step reference of 200 rad/s.
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Fig. 10. Response to a step reference of 600 rad/s.

5. CONCLUSION

The presented method allows the invariance of
dynamic performance of the closed-loop system in
all  operating range. The problems of the parametric
adaptation of the control law and the equilibrium
estimation are solved by the use of a fuzzy supervisor
containing Takagi-Sugeno rules base type. The
synthesis of the fuzzy supervisor rests on the
knowledge of the gains and the equilibrium for a
finished number of operating point, which constitutes
a discretisation. This discretization is very important
from a practical point of view. Indeed this method
does not require necessarily the knowledge of a
global model, generally nonlinear, but is satisfied
with a finished number of local linear models. This
method was applied to the control by the inductor of
a D.C. motor.  A generator of reference trajectory is
installed in order to limit the points of current and to
ensure a more progressive variation of the reference.
The performances obtained with the supervised
control were compared with the linearizing control of
Isidori. The results are satisfactory and lead to the
validation of this method.
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