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Abstract
Our study focuses on the estimation of 316L stainless steel specimens lifetime, subjected to Low Cycle

Fatigue (LCF) and High Cycle Fatigue (HCF). So we developed a fatigue damage test rig using alternative

bending. The LCF is defined by repetitive cyclic stress in a short period. The material behaviour subjected

to LCF and HCF can provide information linked to the fatigue damage. The purpose of this study is to

analyze and caracterize the fatigue of a material subjected to LCF and HCF using signal processing tools.

We observe that the specimen vibration signal is a coupling of periodic phenomenon (cycle of sollicitaion)

with random stationary phenomenon (random amplitude due to the fatigue damage). For this reason spectral

analysis and cyclostationary study are carry out during the manipulation setup. Our observations show that

the fatigue damage of the material produces a periodic stochastic processes (cyclostationarity of order 2 )

appear in vibration signal. Accordingly we propose a new indicator for fatigue damage : the amplitude of

cyclic frequencies.

1 Introduction

The fatigue damage is one of the main causes of machines defect found in industry. The detection of this type

of damage is very difficult and this affects the maintenance scheduling. To estimate machines lifetime which

are subjected to fatigue damage, the reliability is the most frequently used. In fact, the using of data bases as

input for reliability measurment will not always give reliable results. Therefore, other machines lifetime es-

timation methods have been investigated to propose damage indicators and estimate lifetime corresponding.

Thereby, we use the signal processing approach to suggest a new damage indicator.

Our study focuses on the estimation of the lifetime of 316L stainless steel specimens subjected to LCF and

HCF. To carry out our study, a fatigue damage test rig using alternative bending is manipulated. The material

behaviour subjected to LCF or HCF can present information linked to the fatigue damage, and the study of

the specimen vibration signal can provide an indication about the fatigue damage state. In the framework

of signal processing, a study has shown that the cyclostationary analysis of vibration signal of foot ground

reaction forces provides the identification and evaluation of gait and running abnormalities. [1] show that the

cyclostationarity provide information about the development of runner’s fatigue .

Cyclostationarity is a property that characterizes stochastic processes whose statistical properties periodically

vary with time. An important amount of work has been achieved since then, especially by Gardner et al.

[2][3], yet it is only during the last two decades that cyclostationarity has led to important breakthroughs in

communications and breached the usual assumption of stationary [4].

This paper is organized as follows : In the section 1 we present the test rig and the acquisition system. In the

section 2 we analyze and characterize the collected signals. A brief review of cyclostationary analysis and



its basic concept is exhibited in the section 3. In the section 4 we identify and quantify the specimen fatigue

damage and by means of cyclostationarity and make a matching with materials technology. It demonstrates

that the fatigue damage of the material produces a cyclostationarity of order 2 in the vibration signal. To

finish we propose the Energy of the Cyclic Frequency (ECF) as a new fatigue damage indicator.

2 Test rig description

The test rig consists of differents parts :

Figure 1: Test rig

• Test specimen : 316L stainless steel,

• Linear motor and variable-speed drive,

• Bending dispositif,

• Data acquisition system.

A linear motor is controlled by a variable-speed drive. With a bending device, one-sidedly clamped specimen

is bent by the motor movement. This cyclic deformation provides alternative bending of the test specimen

and under many cycles, the specimen gets damaged by fatigue and breaks.

2.1 The test specimen : 316L stainless steel

The studied material is an austenitic chromium- nickel stainless steel containing molybdenum Z2CND17-12

(AISI 316L). This addition increases general corrosion resistance, improves resistance to pitting from chlo-

ride ion solutions, and provides increased strength at elevated temperatures.The experimentation is carried

out on a specimen of 3mm diameter at differents lengths : 200mm ; 245mm ,corresponding to different stress.



Figure 2: Stainless less 316L

Physical Properties 316L Stainless Steel

Density 8000 Kg/m3

Elastic Modulus 193 GPa
Tensile Strength, Yield Rp 0.2% 220 MPa
Breaking loads 520-670 MPa
Mean co-eff of Therma expansion 0− 1000C 15.9 µm/m/0C
Thermal Conductivity at 1000C 16.3 W/m.K
Specific Heat 0− 1000C 500 J/kg.K)
Elec Resistivity 740 nΩ.m

2.2 The linear motor and the variable-speed drive

Comprising just two parts, a rod and forcer, the tubular linear motor Figure(3) is inherently simple . The

stainless steel rod is filled with magnets placed end to end. The forcer incorporates a series of coils connected

as three phase windings. When the coils are excited by three phase current, a magnetic field is created and

interacts with the rod magnetic field, generating linear force.

Figure 3: The tubular linear motor and magnetization system

The variable-speed drive Figure(4) is in reality an automaton device. It is used to load instructions to the

operating motor: the movement type, amplitude and frequency etc. These instructions are notified in a

special software of monitoring CME2.

The software CME2 is provided with the variable-speed drive, it allows to monitoring the motor in applying

instructions through the variable-speed. The documentation CME2UsrGuide gives many information about

its utility. After setting the software (active port, motor type, units, etc.), when it operates, the following

window Figure(5) appears. In pressing in ’CVM Control Program’ the machine virtual screen is opened in

which instructions are entered. The communication with the computer is done through RS232 connexion,

that recieves orders in ASCII language.



Figure 4: Variable-speed drive and its connections to the motor

Figure 5: CME2 Software

2.3 The bending device

The bending device figure(6) is a kind of mechanical system, designed exclusively for this test bench. It is

mainly constituted of 4 functional elements :

- (1) 2 ceramic rollers that bend the test specimen during the linear motor movement. So during the test, the

test specimen is smoothly bended due to the turning rollers around themselves. Ceramic is a good insulator,

with a good friction coefficient and heat dissipation.

- (2) a spacer system of ceramic rollers held by a spring. It allows placing and holding in position the test

specimen.

- (3) a horizontal clamping screw, regulates the space between the ceramic rollers.

- (4) a linear guide rail moves the set (1) (2) and (3) relative to the frame.

2.4 The fixing system

The specimen holding is adjusted with device presented in figure(7). The system consists of three parts

attached via specimen. These parts are :

- (1) The fixing block to the frame,

- (2) The threaded steel tube ,

- (3) The set that holds one specimen end in position.



Figure 6: System bending

Figure 7: System fixing

2.5 The data acquisition system

To record vibration signal we used the National Instrument PCI-4462 24-bit. It is a high-accuracy data ac-

quisition board specifically designed for sound and vibration applications. The NI PCI-4462 features 118

dB dynamic range and six gain settings for precision measurements with microphones, accelerometers, and

other transducers that operate at high dynamic ranges. To count the number of cycles of motor and record

automatically the specimen vibration signal, we designed a specific application in LabVIEW language. Lab-

view is a National Instruments system design software that provides to create and deploy measurement and

control systems through unprecedented hardware integration figure(8).

Figure 8: NI PCI-4462 and Acquisition software

3 Analysis and characterization of signals

The vibration signal is sampled in 50 Khz and recorded every 1000 cycles until the specimen breaks. A cycle

is defined as a double bending of a specimen during the linear motor’s translation. At low temperature (room

temperature), the mechanical cyclic stress creates external stress field which shifts the metallic crystals.

These dislocations lead sliding in intra-granules, allowing elastic or plastic deformation amplitude d [5], [6].

This sliding correspond to the link fracture between atoms, producing free electrons as showed in figure (9).



Figure 9: Intra-granules sliding

This link fracture between atoms appears in the vibration signal as periodic burts with period T0/2 = 1/2f0
corresponding to each bend. A cycle is defined for a periode T0 = 1/f0.
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Figure 10: Vibration signal

4 Cyclostationary analysis

4.1 Basic definitions

A signal is cyclostationary when its statistical moments are periodic.This type of signal can be define as

stochastic process that exhibits some hidden periodicity of its energy flow. In mechanical systems under

constant operating (speed, torque...) this hidden periodicity is due to the various rotation of mechanical

components which produce periodic modulations of the vibration signal [4].

To depict how the energy relative to the hidden periodicity travels with time, the idea is to decompose the

energy flow into pediodic component. For that, let us introduce an extraction operator P that extracts all



periodic components contained in a time function :

P{.} =
∑

α∈A

(

lim
T→∞

1

T

∫

T

(.) e−j2παtdt

)

.ej2παt (1)

A is the set containing all cyclic frequencies α associed with non-zero periodic component,
∫

T
(.) dt means

the summation over an interval of length T , frequencies α are commonly known as the cyclic frequencies of

the signal, and its inverse as cycles. Let us denote P0{.} to be on operator corresponding to P when α = 0
(in the case of stationary random signal), this operator extract the time-average value (DC component) of a

signal:

P0{.} = lim
T→∞

1

T

∫

T

(.) dt (2)

The Fourier Transform of x(t) is given by :

P0{x(t).e
−j2παt} = lim

T→∞

1

T

∫

T

x(t)e−j2παtdt. (3)

After defining these operators, let us introduce more advanced signal processing tools.

4.2 Orders of cyclostationarity

A cyclostationary signal can be decomposed as a mean value part mx(t) = P{x(t)} and residual part

R{x(t)} :

x(t) = P{x(t)}+ R{x(t)} (4)

Where P{x(t)} includes all the periodic components of the signal, it is the deterministic part . The residual

part R{x(t)} includes all the random components that exhibits some hidden periodicity of its energy flow,

it is the random part . The introduced decomposition, remind that a signal is cyclostationary when its

statisticals moments are periodic. Let’s give precisions about orders of cyclostationarity :

• A signal is said to be purely cyclostaionary at order 1 , ie P{x(t)} = P{x(t + T0)} with T0 the

period of the signal, if its residual part R{x(t)} does not exhibit cyclostationarity at any order.

• A signal is said to be purely cycloastationary at order 2 if its derterministic part P{x(t)} is nil and its

residual part R{x(t)}is cyclostationarity at order 2, ie there exists a value of τ for which the interaction

x(t + τ/2)x(t − τ/2) produces a periodic component :Rx(t, τ) = Rx(t + T, τ + T ) with T = 1/α
the cyclic period, where Rx(t, τ) is the autocorrelation function.

It is rarely that mechanical systems produces signals that are purely cyclostationary at a given order, they are

rather a combination of several orders of cyclostationariy.

4.3 Estimation of the deterministe part

The P-operator applied to the cyclostationary signal x(t) extracts the signal synchronous average mx(t),
with period T and number of period K:

mx(t) = E{x(t+ nT )} = P{x(t)}

=
∑

α∈A

P0{x(t).e
−j2παt}.ej2παt

=
∑

α∈A

Mα
x .e

j2παt (5)



The quantities Mα
x are the non-zero coefficients decomposotion Fourier with. mx(t) can be estimated as

follows, figure (11):

mx(t) =
1

K

K−1
∑

n=0

x(t+ nT ) (6)

Figure 11: Principle of the time synchronous average illustrated on a vibration signal

4.4 Estimation of cyclostationarity at order 2

The first step is to extract the predictable part P{x(t)} from the signal x(t) : R{x(t)} = x(t)−P{x(t)}.

Figure (12) displays the vibration signal over 5 cycles together with its decomposition into a mean value

P{x(t)} and a residuel value R{x(t)}. We observe a strong periodic mean value in P{x(t)} synchronised

on the engine cycle. It is noteworthy that P{x(t)} value is drastically the same as R{x(t)}. R{x(t)}
indicates that a random fluctution exists from cycles to cycles, yet it is two orders of magnitude smaller than

the mean value P{x(t)} ; it is obviously second-order cyclostationary since squaring it produces periodic

components.

Let’s consider x(t) after removing the first order cyclostationarity part.To mesure the mean interaction be-

tween two values of the signal spaced apart by time-lag τ around time instant t, respectively x(t+ τ/2) and

x(t− τ/2),we use the autocorrelation function :

Rx(t, τ) = E{x(t+ nT − τ/2)x∗(t+ nT + τ/2)} = P{x(t+ τ/2)x(t− τ/2)}

=
∑

α∈A

P0{x(t+ τ/2)x(t− τ/2).e−j2παt}.ej2παt

=
∑

α∈A

Rα
x(τ).e

j2παt (7)

Where Rα
x(τ) is the Fourier series of Rx(t, τ) so-called cyclic autocorrelation function . The autocorrelation

function reveals the repetitive bursts of energy , that characterizes the presence of a periodic mechanism. In
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Figure 12: Decomposition of the signal into deterministic and random parts

the particular case of τ = 0, Rx(t, 0) is the mean instantaneous power and Rα
x(0) is the cyclic power .The

mean instantaneous power Rx(t, 0) provides a global vision on how the energy of a signal is flowing with

respect to time.

4.5 Mathematical model for cyclic analysis

The cyclostationarity results from coupling between periodic phenomenon and another stationary but random

ones. A model for the nature of modulation is given as follow :

x(t) =
∑

k

[Bk +A2k(t)]cos(2πkf0t) + b(t) (8)

Where Bk is a constant since it depends pratically on the specimen material and on the mecanique stress, and

f0 is the sliding frequency. The randomness is given by the amplitude Ak(t) ∼ N (0, σ2
A) which is ≪ 1.

We assume that this amplitude is linked to the specimen damage state. The parameter b(t) ∼ N (0, σ2
b ) is

independent and identically distributed noise. Equation Eq.8 can be decomposed as follow :

x(t) =
∑

k

Bkcos(2πkf0t) +
∑

k

Ak(t)cos(2πkf0t) + b(t) (9)

• The first order cyclostationarity part of x(t) is represented by
∑

k Bkcos(2πkf0t).

• Whereas
∑

k Ak(t)cos(2πkf0t) + b(t) represents the second order cyclostationary part.

To simplify equations, let’s consider x(t) = A(t)cos(2πf0t) + b(t) after removing the first order cyclosta-

tionarity part. The instantaneous correlation of x(t),is as follow :

Rx(t, τ) = E{x(t− τ/2)x∗(t+ τ/2)}

= E{A(t+ τ/2)A(t− τ/2)}
1

2

(

cos(2πf0(2t)) + cos(2πf0τ)
)

+E{Ax(t+ τ/2)b(t+ τ/2)}cos(2πf0(t+ τ/2))

+E{A(t− τ/2)b(t− τ/2)}cos(2πf0(t− τ/2))

+E{b(t+ τ/2)b(t− τ/2)} (10)



When A(t) and b(t) are uncorrelated E{A(t)b(t)} = 0. With σ2
Aδ(τ) = E{A(t + τ/2)A(t − τ/2)} and

σ2
b δ(τ) = E{b(t+ τ/2)b(t− τ/2)} we obtain :

Rx(t, τ) =
1

2
σ2
Aδ(τ)cos(2π(2f0)t)) +

1

2
σ2
Aδ(τ)cos(2πf0τ) + σ2

b δ(τ) (11)

This shows that Rx(t, τ) is periodic at 1/2f0 and 1/f0. The cyclic-correlation is given as follows :

Rα
x(τ) =

1

4
.σ2

Aδ(τ)δ(α− 2f0) +
1

4
σ2
Aδ(τ).δ(α+ 2f0)

+
(1

2
σ2
Aδ(τ)cos(2πf0τ) + σ2

b δ(τ)
)

δ(α) (12)

Rα
x(τ) is nonzero for α = ±2f0 and 0.

Figure 13: Cyclic correlation applied on residual signal R{x(t)} estimated by synchrone analysis

The Figure (13) displays the cyclic correlation of the vibration signal. It is seen that the cyclic-correlation

is essentially dominated by a distribution of spectral points below f0 = 1.2 Hz that are spaced apart by

increments of 1.2Hz along the alpha cyclic frequency axis. The frequency f0 = 1.2 hz correspond to

the engine frequency. We can see that the highest energy appears in the cyclic frequency of 2f0 = 2 ∗
1, 2Hz corresponding to the round-trip frequency. As discussed before, this is the signature of second-order

cyclostationary components.

To reveal certain types of hidden periodicities it is necessary to scrutinize how the mean instantaneous power

is distributed in frequency domain. The spectral correlation density SCα
x (f) allows to do this observation :

Rx(t, τ) =
∑

α∈A

Rα
x(τ).e

j2παt =
∑

α∈A

SCα
x (f).e

j2πft.ej2παt (13)

SCα
x (f) is a density of correlation of two spectral components (f1 and f2) spaced apart by α around the

central frequency f ie f = (f1 + f2)/2 and α = f2 − f1.

The spectral correlation density is given as follows :

Sα
x (f) =

1

4
σ2
A.δ(α− 2f0) +

1

4
σ2
A.δ(α+ 2f0)

+
1

4
σ2
Aδ(f + f0)δ(α) +

1

4
σ2
Aδ(f − f0)δ(α) + σ2

b δ(α) (14)



By generalizing to the model defined in Eq9 we get :

Sα
x (f) =

∑

k

1

4
σ2
Ak

.δ(α− 2kf0) +
1

4
σ2
Ak

.δ(α+ 2kf0)

+
1

4
σ2
Ak

δ(f + kf0)δ(α) +
1

4
σ2
Ak

δ(f − kf0)δ(α) + σ2
bk
δ(α) (15)

Sα
x (f) is nonzero for α = ±2f0 and 0. The fundamental cyclic frequencies are ±2f0, the harmonics are

{±2kf0, k = 2, 3, ...}.

Let us consider x∆f (t, f), the filtered version of signal x(t) through a frequency band of width ∆f centred on

frequency f . The P-operator applied to x∆f (t, f) describes how the energy is flowing with respect to both

time and frequency. The obtained quantity Px(t, f,∆f) is a time-frequency spectrum named instantaneous

power spectrum :

Px(t, f,∆f) = P{|x∆f (t, f)|
2}

=
∑

α∈A

P0{|x∆f (t, f)|
2 .e−j2παt}.ej2παt

=
∑

α∈A

Pα
x (f ; ∆f).ej2παt (16)

The Fourier coefficient Pα
x (f ; ∆f) quantifies the intensity of such hidden periodicities, it is the cyclic mod-

ulation spectrum . In [7], it has been shown that :

∫

∆f

SCα
x (f).df = Pα

x (f ; ∆f) = P0{|x∆f (t, f)|
2 .e−j2παt} (17)

So the random part R{x(t)} may be estimated in filtering the signal x(t) through a specific frequency band

of width ∆f centred on a specific frequency f :

R{x(t)} = x∆f (t, f) (18)

Figure 14: Cyclic correlation applied on residual signal R{x(t)} estimated by filtering of x(t).

We can choose the optimal set {∆f ; f} using the Kurtogram [8] or by choosing f corresponding to high

frequencies, around a resonant frequency in order to take advantage of the treadmill resonance, with ∆f
wide band. In our case we have chosen the second way with {∆f ; f} = [22KHz : 23KHz, 22, 5KHz]
with 22, 5KHz a resonant frequency.



As illustred in the figure (15), the deterministic part of the resulting signal x∆f (t, f) is nil and its spectrum

P0{x∆f (t, f).e
−j2παt} presents no cyclic frequencies. However, the spectrum P0{|x∆f (t, f)|

2 .e−j2παt}
reveals cyclics frequencies α related to the hidden periodicities of the vibration signal x(t). Zooming of

P0{|x∆f (t, f)|
2 .e−j2παt} at low frequencies, clatity the cyclic frquency α = 1, 2Hz and its harmoniques.

We can also remark that the signal power is essentially distributed in the cyclic frequency 2, 4Hz and on its

harmoniques : The vibration signal x(t) contains a hidden periodicity at the cyclic freqeuncy α = 2, 4Hz
which macthes the round-trip frequency.

The figure (14) displays the cyclic correlation of the random noise R{x(t)} = x∆f (t, f). In comparison to

the cyclic correlation displayed in the figure (13), we notice that the energy of the frequency 2f0 = 2, 4Hz
and its harmoniques appear significantly in relation to the frequency f0 = 1, 2Hz, but with a lowest value :

10g for the first estimation showen in figure (13) and 0.05g for the second estimation showen in figure(14).

These observations show that the signal x∆f (t, f) is purely cyclostationary at order 2, with the cyclic fre-

quency α = 2f0 = 2, 4Hz, and confirms the mathematical model that we suggest.

Figure 15: Comparison between P0{x∆f (t, f).e
−j2παt} and P0{|x∆f (t, f)|

2 .e−j2παt}

5 Identification of the fatigue

5.1 Mechanical solicitation description

Specimens are subjected to a cyclic sinusoidale mechanical sollicitation. Indeed, the fatigue phenomenon

is characterized by commencing microcrack apparition on the surface. These microcracks increase in the

surface and spread until the fracture occurs. They macrocrack spread through the material, at first slowly

and the pace become more and more quickly until breaking [9]. Our study is carried out in the framework

of plastic fatigue damage, and we applied stresses superiors to the elastic limit Rp at 0, 2% of 220 Mpa :

550 Mpa and 350 Mpa. For stress of 350 Mpa, the nunmber of cycles to damage Nf is above 106, which

corresponds to high cycle fatigue. For stress of 550 Mpa, Nf is below 106, which corresponds to low cycle

fatigue.



(a) In the starting (b) During the test (c) At the breaking

Figure 16: Cyclic correlation during the test

(a) test specimen1 (b) test specimen2

Figure 17: Tracking of the frequency energy over the number of cycles

5.2 Low cycle fatigue : Tracking of cyclic frequency energy

At 550 Mpa stress, we tracked the energy of cyclic frequency. As illustrated in figure(16), we observed that

the energy of cyclic frequency increases with the damage of the specimen until the breaking. Figure(17)

shows the tracking of the cyclic energy for two identical test specimen at same stress. At the beginning of

the test we noticed a significant cyclic frequency energy which increases linearly with respect to the number

of cycle before breaking. Although we see this trend, for each specimen, we observe neither the same slope

nor the same maximum value of the cyclic energy at the breaking. For example for the specimen1 we have

a slope of 5, 4.10−7 for a maximum value of cyclic energy of 0,2 g2 whereas for the specimen2 we have

a slope of 2, 6.10−6 for a maximum value of cyclic energy of 0,75 g2. These observations show that it is

difficult to define a cyclic energy threshold for the detection of the rupture. Indeed the energy dispersion of

a specimen to another are very important. Whatever the cyclic energy increases with damage.

5.3 High cycle fatigue : Tracking of energy cyclic frequency

At 350 Mpa stress, we tracked the energy of cyclic frequency.As illustrated in figure(18) we note that at the

beginning of the fatigue tests, cyclic energy is 0.05 g2 and remains constant over 250000 cycles, from which

it increases up to 885000 cycles. From 885000 cycles the cyclic energy decreases immediatly and remains

constant throughout the test. After 1 month of operation (2.106 cycles), the specimen was not broken. In the

field of high cycle fatigue, at the beginning of the cyclic test the energy is constant and increases after a high

number of cycle.



Figure 18: Tracking of the frequency energy over the number of cycles

5.4 Origin of the Cyclostationarity at the order 2 : the strain hardening effect

During deformation at room temperature, the atomic bonds deform elastically with the stress. In this case, the

metal returns to its original shape when we remove the stress : its the elastic deformation. If the stress is kept

beyond the elastic limit, it follows plastic deformation resulting from the shift of part of the crystal relative

to another, according to certain inter-reticular distances. This type of shift is favored by the formation,

multiplication and movement of line defects in the crystal called mobile ”dislocations”. Dislocation motion

is not reversible, the metal does not resume its original shape when you remove the constraint. The increasing

number of dislocations produced during plastic deformation and their interaction with each other ,leads to

reduced mobility : it is the phenomenon of strain hardening that result in a hardening of the metal [10].

Several studies have shown that in the case of austenitic stainless steel, strain hardening causes a change

in crystal structure [11] [12]. Indeed under the work hardening, the metastable austenite was transformed

to hardening martensite. Results of studies [13] and [14] showed that the volume fraction of transformed

martensite increases with increasing prestrain. Indeed the work hardening of steels increased with increasing

martensite content and the transformed martensite in the microstructure remarkably affects the deformation

behavior of the steel.

Studies of materials science have clearly shown that stainless steel subjected to strain hardening suffered a

molecular transformation of austenite to hardening martensite and that it becomes unstable. We think and

put the hypothesis that this unstability appears in a vibration signal as a random periodic component to the

period of solicitation. The cyclostationarit to order 2 is linked to the hardening state of materials, thus to its

level of damage.

6 Conclusion

The cyclic frequency energy is linked to the chemical composition of the specimen. During the damage,

in the presence of hardening strain, the austenite is transformed to a hardening martensite and becomes

unstable. This unstability appears in the vibration signal by a hidden random component periodic at the

periode of the sollicitaion. More the material is damaged more we have martensites and most important is

the cyclic frequency energy. Therefore it is possible to track the damage of a stainless steel by means of the

cyclostationarity at the order 2 .
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[14] Z. yu XUE, S. ZHOU, and X. cheng WEI, “Influence of pre-transformed martensite on work-hardening

behavior of sus 304 metastable austenitic stainless steel,” Journal of Iron and Steel Research, Interna-

tional, vol. 17, no. 3, pp. 51 – 55, 2010.


