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ABSTRACT: The aim of this paper is to present the control of a conventional suspension with
an electromagnetic actuator.  The principle of the control rests on the compensation of the
non  linearity so as to obtain a suspension whose stiffness and damping are programmable.
The main difficulty of this approach is the ignorance of the static characteristics. This
difficulty is solved by using a continuous identification of the nonlinear functions
characterizing the components of the suspension. The approximation functions used are the
Fuzzy Inference Systems (FIS) which have the property of universal approximator.
According to this principle, the control developed in this work leads to a new continuous
nonlinear adaptive control algorithm. Copyright © 2002 IFAC.
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1. INTRODUCTION

A car suspension is meant to absorb vibrations caused
by the profile of the road in order to improve the
riding comfort. The road-holding quality is another
requirement which must also be taken into account as
far as safety is concerned. Both demands are
conflicting i.e. we talk of the dilemme over riding
comfort versus road-holding. A classical suspension
uses a spring which allows the contact of the tyre with
the ground in spite of any disturbance which might
occur during the drive. However the spring alone is
not sifficient as such a device implies natural
oscillatory movements. It is thus necessary to
introduce a viscous friction which very quickly
absorbs the oscillations that is the damper.

The traditional suspension used on motor vehicles
consists of the two following basic components : the
spring and the damper, the mechanical characteristics
of which are not adjustable (the stiffness and the
friction coefficient). These two parts are dimensioned
in order to reach the best possible arrangement
between the riding comfort and the road-holding
qualities in a wide range of operating conditions.
However, so many different road profiles and loading
conditions are involved that they do not allow an

optimal behavior in any situation owing to the
passivity of the elements.

Many works [Buc. 01], [Dun. 91], [Red. 89], [Yas.
91], [Yue. 89], showed that introducing active parts
in the suspension leads to a remarkable improvement
in the road handling in spite of the varying operating
conditions. Hydraulic components are used on the
present active suspension. They are controlled in
order to obtain an ajustable stiffness and damping.  It
is then possible to adjust the characteristics of the
suspension to fit the different loading conditions and
the profile of the road. Thus we  obtain a compromise
between the riding comfort and the road-holding
qualities which is satisfying in all circumstances.
However, the control law used for the conventional
active vehicle suspension does not take into account
the non linearity of the stiffness and damping
characteristics. This work focuses on a nonlinear
adaptative control of an active vehicle suspension.

The following work proposes to use an electric
actuator for the realization of an active suspension.
This actuator compared to an hydraulic one offers a
much greater robustness and needs almost no
maintenance.  The specificity of the application
considered lead us to design an original actuator
which has been patented.  This paper is divided into



four parts.  In the first part, after having described the
general principle of the actuator used, we present a
modelling intended for the synthesis of a control in
effort of the actuator.  In the second part, we are
interested in the active suspension of a motor vehicle
for which the actuator proposed could be used.  In
this second part we propose a control law allowing to
obtain an ajustable stiffness and damping.  However,
the synthesis of this control law requires the
characteristics of stiffness and damping which are
unfortunately non-linear and imperfectly known.  To
overcome this difficulty, we propose in the third part
a continuous nonlinear adaptive control.  The
functions of approximation used for the estimation of
nonlinear characteristics are fuzzy inferences systems
(FIS).  We finally present a proof of the stability of
the proposed control law. Various simulation and test
results intended to validate the principles of the
suggested control law are presented in the fourth part.

2.   WORKING PRINCIPLE,  MODELLING AND
EFFORT CONTROL OF THE ACTUATOR

Figure 1 presents the schematic diagram of the
proposed actuator.  It consists of a mobile cylindrical
core, as well as bolt wich makes it possible to channel
the lines of a field and it also ensure the mechanical
rigidity of the unit and  a winding intended to create a
magnetic field.
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Fig. 1. Schematic diagram of the actuator.

The origin of the force being exerted on the core
under the action of the magnetic field created by the
winding, comes from the presence of the gap e
between the core and the bolt. The moving part of the
system moves in the direction of a minimal magnetic
reluctance, i.e. in the direction of an increase in
surfaces in glances. Please note that this actuator
cannot exert itself on both directions. Thus, two
actuators must be considered, one used for pushing
and the other for pulling.

2.1. Modelling of the actuator

The winding of the actuator, supplied under a
potential difference u, is traversed by an electrical
current i giving rise to a magnetic field whose lines of
fields are channeled by the bolt and the mobile core.
Under the action of this field, the ferromagnetic core

is subjected to a magnetic force Fm function of
position x of the core and current (figure 1).  The
expression of the force can be given by calculating
the energy stored in the system, this one is expressed
by the following relation:
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where �� represents the reluctance magnetic circuit
which varies with the displacement of the core and φ
the magnetic flux.  The application of the Ampère
theorem leads to the well-known Hopkinson law
connecting the magnetomotive force �� to the
reluctance and the magnetic flux: φ)(xni �� == .
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The power provided to the system appears as the sum
of the electric power and the mechanical power:
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The magnetic force is thus written:
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This last relation suggests the possibility of using a
model of the form:

2)(),( ixpxiFm =                          (5)

where p(x) is a polynomial, the coefficients of which
are given starting from experimental results; it then
leads to the following relation:

( ) ( ) 232 54.23934.2694.1197.0, ixxxxiFm ⋅−+−= (6)

Figure 2 presents the law of effort according to the
position obtained using the relation (6) compared
with the experimental results.
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Fig. 2. Theoretical and experimental results of the
force law.



Figure 3 presents the Bond-Graph model of the
actuator where m is the total mass of the moving part
and c the coefficient of viscous friction present in the
guidance of the core.
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Fig. 3. Bond-Graph model of the actuator.

Taking into account this representation, the state
space model of the actuator is given by the system
(7).
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2.2. Effort control of the actuator

The objective is to carry out a control in effort of the
system of figure 1.  According to the relation (5), the
reference current of ir to impose on the system so that
it produces the desired effort Fm writes

)(xpFi mr = .  The electromagnetic force Fm thus

can be obtained by controlling the current in the
actuator with the reference current of ir using the
following control law:
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The functional diagram of figure 4 presents the
control of the actuator making it possible to obtain
the desired effort Fm .     
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Figure 4. Effort control of the actuator..

Blocks Σi and Σm respectively represent the dynamics
of the electric part and the mechanical part of the
actuator.  The suggested  control law in addition to
the linearization of the system makes it possible to
impose the desired effort Fm.  The electric part is
controlled in current using a conventional

proportional and integral compensator.  The
reference current is calculated according to the
desired force.

3. APPLICATION TO THE ACTIVE
SUSPENSION

Figure 5 presents the mechanical structure of an
active suspension as well as the corresponding Bond-
Graph model.  M is the body mass, kM the spring
coefficient of suspension, bM the damper coefficient
of suspension, Fm represents the effort developed by
the actuator considered above, m  the wheel mass and
km the stiffness of the tyre.
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Fig. 5. Mechanical structure of an active suspension
and its corresponding Bond-Graph model.

If we take into account the Bond-Graph model of
figure 5, the state space representation of the system
is written as follows:
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The stiffness and the damping of a conventional
suspension are respectively nonlinear functions of the
position variation 

Mmx xx −=∆ and speed

variation
Mmv vv −=∆ , which we will write:

( )xkM fk ∆=  and ( )vbM fb ∆=  [Buc. 01].  The state

space representation is then:
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The functions ( )xkf ∆  and ( )vbf ∆  being nonlinear,



the dynamic behavior of the suspension varies
according to the operating conditions, which can be
prejudicial to the comfort and the handling in case of
severe conditions of operation.  The principle of the
control developed in the continuation consists in the
compensation of the non linearities of the suspension,
so as to obtain a dynamic behavior which is
independent of the operating conditions.

Let , respectively, r
Mk  and r

Mb  be the desired stiffness

and damping, the problem is to build a control law so
that the suspension behaves like the following
reference model:
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Comparing (10) and (11), the required control law is
written:
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This control law requires the knowledge of the
nonlinear functions ( )xkf ∆  and ( )vbf ∆ , which is not

usually the case.  We then propose to build the
control law (12) from a real time estimation of the
unknown functions [Cal. 01], [San. 92], [Tzi. 92].

4. NONLINEAR ADAPTIVE CONTROL

In this part one proposes to seek estimators

( )kxkf θ∆ ,ˆ  and ( )vvbf θ∆ ,ˆ  allowing to approach the

unknown functions ( )xkf ∆  and ( )vbf ∆ , where the

parameters vectors 
kθ  and 

vθ  are adjusted so that

the following quadratic criteria are minimized.
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where T represents the horizon on which optimization
is carried out.

4.1. Fuzzy Inferences Systems like approximation
functions

The choice of the functions ( )kxkf θ∆ ,ˆ  and

( )vvbf θ∆ ,ˆ  is not indifferent. These must have the

property of universal approximator in order to ensure
the existence of solutions.  We propose to build these
functions using fuzzy inferences systems (FIS).  This
choice is justified by their capacities of
approximation and by their easility to integrate
qualitative knowledge under the shapes of linguistic
rules.  Indeed, it was shown that the FIS are universal
approximators [Wan. 92], in other words any
sufficiently regular function can be approximated
with an arbitrary precision, by a FIS, after a suitable
adjustment of the parameters using a training
algorithm.

Note that the neural networks [Hor. 94], polynomial
functions or Fourier series for example have also this
property.  However, the enormous advantage of the
FIS comparatively to the other approximators is their
aptitudes to integrate qualitative knowledge which
expressed by using linguistic rules, fixes the structure
of the network (structural tuning). From this point of
view, we can then speak of a linguistic knowledge
model, whereas the other approximators are rather
purely numerical models.  The fact that a SIF defines
implicitly a nonlinear function makes it possible to
use the existing techniques of parametric adaptation
of the usual approximator to carry out the tuning of
the FIS.

A monovariable Fuzzy Inference System of input u
and output y is a nonlinear function ( )θϕ ,uy =
defined by the following system:
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where Φ is an operator of fuzzification, �
~

 is a fuzzy
relation making it possible to modelize the rules base
used to build the function ϕ, N represents the total
number of rules.  The symbol ° is an operator of
fuzzy inference making it possible to calculate the
image of the fuzzy subset resulting from the

fuzzification, by the fuzzy relation �
~

.  ∆ is an
operator of defuzzification making it possible to
transform the result of the inference which is a fuzzy
subset in a numerical value directly usable for the
control. 

iA
~  and 

iB
~  are fuzzy subsets defined,

respectively, by the following membership functions
( )iu

i
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A
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i
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B
.  These functions are

parameterized by the vectors 
iα , 

i
β  with Ni �1=

which are the adjustable elements of the FIS. In the
continuation we consider the case where the 

iB
~  are

defined by fuzzy singletons and the 
iA

~  by triangular,

trapezoidal, or Gaussian membership functions.
Table 1 gives the corresponding expressions of these
different membership functions.



Table 1 Various membership functions used.
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In order to limit the number of parameters, we
propose a formulation using in all cases only two
parameters of adjustment (table 2).

Table 2 Parameter setting of the membership
functions.
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If the fuzzification is realised by singleton and the
fuzzy inference operator is the supremum-product
and the defuzzification is carried out by the centre of
gravity, one shows that the analytical expressions of
the FIS (14) is written [Lee. 90], [Dri. 96]:
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A FIS defined such as (15) makes it possible to
approach any continuous function on a given compact
of the  variables with an arbitrary precision related to
the number of rule.  An important difficulty is to
adjust the parameters vector θ so as to carry out a
good approximation of the unknown functions. This
problem can be simplified by adopting a regular
distribution of the membership functions on the
interval of evolution of the input variable u.  In the
case of a uniform distribution of the membership
functions, we obtain for the parameter vectors 
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4.2.  The certainty equivalence assumption

Taking into account (15) and (16), we suppose that
for Nk and Nv given, there is an interval of the
variables ( ) ( )[ ]maxmin , xxx ∆∆∆ ∈  and

( ) ( )[ ]maxmin , vvv ∆∆∆ ∈  on which the unknown and

continuous  nonlinear functions ( )xkf ∆  and ( )vbf ∆
can be expressed using the following relations:
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where the basic function ( )x
i
k ∆ψ  and ( )v

i
b ∆ψ  are

parameterized in accordance with (15) and (16), and
where the parameters i

kβ  and i
bβ  are unknown.

Taking into account (17) the selected approximations
functions are:
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where i
kβ̂  and i

bβ̂  are estimates of the unknown

parameters i
kβ  and i

bβ .  Let us note that the values

provided by the unknown functions  ( )xkf ∆  and

( )vbf ∆  are not directly measurable, it is then

necessary to build, from the measurable variables 
x∆

and 
v∆ , a measurement of the estimation error from

which the adjustment will be carried out.

4.3.The continuous law of the parameters adjustment

According to (10), we have:
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one can then build the following estimator:
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The problem is to seek the parameter vector of the
functions ( )

kxkf β∆ ˆ,ˆ  and ( )
bvbf β∆ ˆ,ˆ  so as to ensure

the convergence to zero of the estimation error:
( ) 0~lim =

+∞→
tvM

t
.  For this purpose one can seek the law

of adjustment of the parameters allowing the
minimization of the following quadratic criterion:
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The law of adjustment of the parameters must be such
as the criterion is decreasing in the time, it is thus
necessary that ( ) 0ˆ <βJ� , that is to say still too

( ) ( ) 0ˆˆˆ <∂∂= βββ �� T
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that is to say that the parameter vector evolves in an
opposite direction to the gradient of the criterion.
This is the well-known gradient method.  In case of a
continuous adaptation of parameters (i.e. 2~2

MvJ = ),

one obtains the following relations:
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where λk and λv are coefficients making it possible to
accelerate the convergence of the estimation. The
calculation of i

kMv β∂∂ ˆ~  requires the analytical

expression of 
Mv~  i.e. the solution of the equation

(21). However 
Mv~  represents the filtering of the

quantity ( ) ( )( ) ( ) ( )( )( ) Mffff vbvbvbxkxkxk ∆β∆∆β∆∆ ˆ,ˆˆ,ˆ −+∆− , if

the time-constant 1/α  of the filter is selected
sufficiently small one can reasonably admit that:
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Taking into account (18), the relation (25) is written:
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from where in accordance with (24) the law of
adjustment of the parameters is the following one:
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The control law (12) making it possible to have a
suspension of stiffness r

Mk  and damping r
Mb  is then

written:

( ) ( ) v

N

i
v

i
b

i
b

r
Mx

N

i
x

i
k

i
k

r
Mm

bk

bkF ∆∆ψβ∆∆ψβ 





−+





−= ∑∑

== 11

ˆˆ (28)

which corresponds to a nonlinear adaptive control by
state feedback.

4.4.  Stability

The application of the continuous adjustment law
(27) leads to an asymptotic convergence to zero of
the estimation error, consequently the closed loop
system behaves like a suspension of stiffness r

Mk  and

damping r
Mb .  To show it let us consider the

following candidate Lyapunov function:
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where i
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b
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estimation errors of the unknown parameters
respectively i

kβ  and i
bβ .  The time derivative of V is

written:
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replacing 
Mv�~ , i

kβ�̂  and i
bβ�̂  by their expressions (21),

(27) and taking into account (17) and (18), one
obtains:
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finally one have 2~
MvV α−=�  which is strictly negative,

then the estimation error converges to zero.

5.  SIMULATION RESULTS

In this part the control law (28) with the mechanism
of adjustment (24) is applied to the suspension
described  figure 5 the nominal parameters of which
are the following: M=290Kg, m=28.5Kg,
km=155900N/m, kM=15000N/m, bM=1500N/m/s. The
rules base used for the approximators 

kf̂  and 
bf̂  is

the following one:
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Defining the fuzzy subsets 
kA

~  and 
bA

~  by triangular

memberships function and taking into account the
parameter setting (16), one obtains the following
expressions of the approximators 

kf̂  and 
bf̂ :
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Figure 6 presents the evolution of the estimation
functions in the case of a constant stiffness and

constant damping.  One can note the convergence to
the nominal values bM=1500N/m/s and
kM=15000N/m.   Figure 7 presents the evolution of
the estimation error. This error converges well
towards zero thus confirming the theoretical results
previously obtained.  One also presents on this figure
the road profile used for simulation.
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Fig. 6. Estimation of the damper and spring.
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Figure 8 presents the tracking performance of the
controlled system.  The reference model is
characterized by a stiffness of 10000N/m and a
damping of 1000N/m/s. The controlled system
behaves as a suspension whose characteristics are
those of the reference model.
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Fig. 8. Tracking of the reference model.

Figure 9 presents the evolution of the estimation
functions in the case of a time varying stiffness and
damping following the relations :
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One can note the convergence towards the
expressions of bM(t) and kM(t).   Figure 10 presents
the evolution of the estimation error, which converges
well towards zero.  This figure presents also the
control applied to the system.
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Figure 9 Estimation of the damper and spring.
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Figure 11 presents the tracking performance of the
controlled system.  The reference model is, like
previously, characterized by a stiffness of 10000N/m
and a damping of 1000N/m/s. The controlled system
behaves as a suspension whose characteristics are
those of the reference model and independent of the
parametric variation of the suspension.
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Fig. 11. Tracking of the reference model.

6. CONCLUSION

In this paper we have presented the modelling and
effort control of an electromagnetic actuator intended
for the control of a conventional suspension.  The
principle of the control rests on the compensation of
the non  linearity so as to obtain a suspension whose
stiffness and damping are programmable.  This type
of control is very useful to adapt the suspension to the
profile of the road and the different ways of driving.
It is indeed difficult to design an optimal suspension
in any circumstance. Such an approach allows us to
obtain the best possible arrangement between the
riding confort and the road-holding qualities, which is
adjusted to meet the requirements of different types
of driving and road profiles. It also compensates any
other modifications such as those brought by the wear
and tear of components

The main difficulty of this approach is the ignorance
of the static characteristics of the components of the
suspension. This difficulty is solved by using a
continuous identification of the nonlinear functions
characterizing the components of the suspension.
This was made possible by the adoption of nonlinear
parametrable functions having the property of
universal approximator.  The choice of fuzzy
inference systems is well adapted thank to their
capacity for approximation of the functions and their
abilities to easily integrate qualitative knowledge.
According to this principle the control developed in
this work leads to a continuous nonlinear adaptive
control.

The nonlinear adaptive control, which was suggested
in this work, was applied successfully to a
conventional suspension with the aim to obtain the
stiffness and damping required by the user.  The
behavior of the closed loop system is very
satisfactory, as much in the case of a suspension
whose characteristics are static, which is not very
realistic, as in the case or they evolve because of a
change of operating conditions, which corresponds
more to reality.
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