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(a): Université de Lyon, Laboratoire de Diagnostic et Imagerie des Procédés Industriels EA
3719 ENISE, 74 rue des Acieries, 42000, Saint-Etienne, France.
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Abstract. Today, to cope with the complexity of the global organization, the industrial company
needs to be more structured. New processes have to be developed due to more and more ambitious
quality requirements. A new problematic arises: what is needed to offer to all customers a product
that meets the quality requirements of a local market?

The main objective of this paper is to propose a quality requirements allocation method that
matches the market specifications and the customer satisfaction. This is in contrast with the
traditional allocation methods which are often time-consuming to implement or do not focus
on the customer satisfaction for the definition of the quality targets. The proposed method is
inspired from reliability allocation method and is formulated as a feasibility problem. In this
context the notion of optimality of the solution is not being sought, the objective is “only” to
find out a solution that satisfies the global target quality. This allows determining some local
quality targets in accordance with industrial data.

Keywords: Quality Allocation, Fault Frequency, Product Life Cycle, Field Experience, Automo-
tive Vehicle.

1 Introduction

1.1 Motivation and Objectives

This study deals with how to allocate a quality target to each part of the system consider-
ing the system complexity. This complexity comes from some technology constraints, the
importance and the component function, the industrialization, the management of subcon-
tractor, etc. The purpose of this research is to introduce a structured quality requirement
allocation method that determines a quality objective for each component of a system,
subject to the satisfaction of a global quality objective of the considered system.

1E-mail address: rosario.toscano@enise.fr, Tel.:+33 477 43 84 84; fax: +33 477 74 34 97
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The method has to be suitable for industrial applications, that is to say:

- It has to be implemented easily,

- It has to be representative of reality,

- It has to take into account all the industrial criteria, in particular those that are
critical for a company like cost, branding, etc.

Although an optimization approach could be used to solve this kind of problems, this seems
not well suited in the considered context, indeed:

- The definition of an objective function and the constraints are often very time con-
suming due to system complexity. In addition, the formulation of the optimization
problem is closely related to the considered system. In other words, the optimization
problem formulated for a given system is not easily transposable to another one, and
this is not very well accepted in an industrial context.

- The resulting optimization problem is non-convex, and so only a local optimum
is guaranteed to be found. If in addition the problem is non-smooth then it may
becomes intractable via standard optimization methods.

- Qualitative criterion cannot be easily taken into account via numerical optimization
methods.

Due to these various limitations, an empirical approach is proposed. The purpose is not to
obtain the optimal solution but a feasible one, i.e., a solution that meets industrial needs.

1.2 Mathematical Formulation

Consider a system of n subsystems, each constituted by Nj independent components. By
analogy to the reliability requirements allocation, the mathematical formulation of the
quality requirements allocation at time instant t can be written as the following feasibility
problem:

find Qs
j , Q

c
ij, i = 1, · · · , Nj, j = 1, · · · , n

subject to fs(Q
s
1, Q

s
2 · · · , Qs

n, t) ≥ QS

f s
j (Qc

1j, Q
c
2j · · · , Qc

Njj
, t) ≥ Qs

j , j = 1, · · · , n
(1)

where fs(Q
s
1, Q

s
2 · · · , Qs

n, t) represents the actual system quality, Qs
j is the quality require-

ment allocated to the jth subsystem, QS is the system quality objective, and fs is the quality
function allowing to compute the system quality knowing the quality of its constituents.
Similarly, f s

j (Qc
1j, Q

c
2j · · · , Qc

Njj
, t) represents the actual quality of the jth subsystem, Qc

ij is

the quality requirement allocated to the ith component of the jth subsystem, and f s
j is the

quality function allowing to compute the subsystem quality knowing the quality of its com-
ponents. The problem that has to be solved is how to choose the Qs

j , Q
c
ij ,i = 1, · · · , Nj,
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j = 1, · · · , n, so that the system quality satisfy the objective QS. Thus formulated this
problem has an infinite number of solutions. However, not all of them are interesting for
practical applications and thus we have to select those that satisfy some additional con-
straints related to cost, branding etc. In addition, it is necessary to give a measure of the
quality which represents the customer satisfaction. The approach proposed in this paper
is to evaluate the customer satisfaction through the concept of fault frequency which rep-
resents the number of customer claims over a given period of time. These aspects will be
considered further in the paper.

1.3 Related Work

The problem of reliability allocation has been addressed since the sixties, at that time
allocation methods have been developed for military needs.

The AGREE method was created by the ”Advisory Group of Reliability of Electronic
Equipment” in 1957. It determines a minimum acceptable service life for each subsystem
to meet the overall objective of the system [11]. The complexity and importance of each
subsystem are considered.

Several approaches are detailed in the MIL-HDBK-338B (U.S. Department of Defense)
in 1988. The Equal apportionment assigns the same reliability requirement to each com-
ponent [9]. For the ARINC apportionment the allocated failure rate is proportional to the
current failure rate. The Feasibility Of Objectives (FOO) technique allocates reliability
requirements depending on four factors: the complexity, the state of art, the operating
time during mission and the environment. All these methods assume the same hypothesis,
the failure rate follows an exponential distribution and they are applied for series system.

Reliability allocation methods have been extensively used in industrial applications. In
1999, Kuo proposed a general model called Average weight for commercial applications
[6]. In 2001, Wang introduced a reliability allocation method for computerized numerical
control lathes design and development in automotive industry [13]. Seven criteria are
considered: failure frequency, failure criticality, maintainability, complexity, manufacturing
technology, working conditions and cost.

In 2009, Chang proposed the ME-OWA method based on the concept of OWA operators
(Ordered weighted averaging) under maximal entropy to solve the problem described by the
method FOO [2]. This method provides a conditional parameter α, ranging from 0.5 to 1 to
take into account the decision maker optimism. Two years later, this method is improved
by combining the decision-making laboratory test, the evaluation method (DEMATEL)
and the ARINC method [7].

Tools for solving optimization problem have been applied for the reliability allocation
complex applications since the nineteen’s. Yang used a Genetic Algorithm to solve the
reliability allocation applied to power plants in 1999 [16]. Another example is the reliability
allocation to a multi-source network of stochastic flows. It determines an optimal policy
for allocating resources that satisfies the demands at nodes while maximizing reliability [4].
Yalaoui introduced a model for minimizing resource consumption subject to a reliability
constraint of a series-parallel system in 2005 [14]. In 2006, Zhang proposed a method called
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Collaborative Allocation to solve the requirements allocation problem as the reliability and
weight requirements when designing an aircraft [18]. The survey paper [6] classifies the
optimal reliability allocation methods according to different criteria: the system structure,
the problem formulation and the optimization techniques. Lisnianski introduced a method
to evaluate the reliability of a multi-states system based on block diagrams in 2007 [8]. The
paper of Ouzineb in 2008 described a simultaneous problem of allocation and redundancy
for multi-states series-parallel systems solved by Tabu Search [10]. The paper of Tian
presents an optimization problem of reliability and redundancy for a multi-state series-
parallel system in 2009 [12]. The objective is to minimize the cost under the constraint
of system availability. In 2009, Bicking proposed a reliability allocation optimization by
Genetic Algorithm applied to the conception of a Security Instrumented System [1]. Yeh
solved a redundancy allocation problem with an artificial bee colony algorithm in 2011
[17].

However, as seen before, the optimization approaches are problem dependent, and
it is difficult to transpose the formulation obtained for a particular system to another
one. Moreover, the formulation of an optimization problem is often a difficult task that
requires the assistance of various experts of the system considered. Under these conditions
optimization approaches seems not very easy to apply in an industrial context.

On the other hand, the traditional methods like the Equal Apportionment, AGREE,
ARINC, FOO technique are quite flexible but not enough complete to answer the spec-
ifications of the problem. In particular, these approaches don’t highlight the customer
aspect. This is in contrast with the proposed method where this aspect is considered via
the concept of Fault Frequency (see section 2.3). Overall, this paper introduces a new
quality requirements allocation method that focuses on the customer aspect and includes
also the warranty point of view.

The paper is organized as follows. Section 2 presents the main tools used in the pro-
posed method. Section 3 gives a detailed description of the proposed quality requirements
allocation method. In section 4, the proposed approach is applied on an automotive appli-
cation example. Finally, section 5 concludes this paper.

2 Tools used for the proposed method

The proposed method is based on some basic tools which are now briefly reviewed.

2.1 Average Weight Method

The average weight method, proposed by Kuo is a flexible allocation model (see also [2]).
An investigation is conducted to determine the most influential factors on system quality,
such as complexity, environment, safety, or maintenance. Each factor Xlij is estimated
on a scale ranging from 1 to 10, by expert judgement. According to this method, the jth
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average factor rate for the ith subsystem, is defined as

Yij =
1

L

L∑
l=1

Xlij (2)

where Xlij is the jth factor rate for the ith subsystem done given by the lth expert, and L
is the number of experts. The weight wi associated to the ith subsystem is then defined as

wi =

∑n
j=1 Yij∑m

i=1

∑n
j=1 Yij

(3)

where n is the total number of subsystems and m is the total number of factors. Assuming
a series system, the reliability objective Rs is distributed among all subsystems according
to the weight wi associated to each subsystem. So, the reliability requirement Ri, allocated
to the ith subsystem is given by

Ri = 1 − wi(1 −RS) (4)

On the other hand, the failure rate λi, of the ith subsystem is given by

λi = wiλs (5)

where λs is the system failure rate. As we will see, the method proposed in this paper
is partially inspired by this model because of its simplicity and flexibility. However, as
already said, one of the main contributions of the proposed approach is to include the
customer satisfaction as well as some other after-sales data.

2.2 Product life cycle

The Product Life Cycle is represented in figure 1. For each life cycle phase, a factor that
represents the quality impact on the product is considered. The State of Art Design factor
represents the impact of the project maturity and the design complexity on the product
quality. The Manufacturing and Assembly factor evaluates the impact of these processes on
the failure probability. The Environment factor includes all the factors that can influence
the component quality after the product sale such as the components interfaces, the specific
vehicle application and working conditions (road, climate, etc.).

2.3 Fault frequency

In the proposed method, the quality of a given component is evaluated by the concept of
fault frequency F , which represents the number of customer claim per product Nclaim, over
a given period of time T . The quantity F is then defined as follows

F =
Nclaim

T
(6)
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Figure 1: Factors which impact the product quality during each phase of the product life
cycle.

This industrial quality measurement is chosen to highlight the customer aspect. Indeed, it
measures the customer claim. It does not only consider the failure of a product but also
the customer satisfaction. If the product has no failure and the customer is not satisfied
of that product then he can make a claim that increases the Fault Frequency.

Field experience feedbacks are considered thanks to the warranty cost and the claim
occurrence. To consider the system cost, it is not possible to sum up all the components
average claim costs because it overestimates the repair cost. Indeed, it is sometimes cheaper
to replace the overall sub-system than the component. This is why another criterion is used
to represent the impact of the warranty costs to the sub-system level. The warranty cost
can be expressed quantitatively as being the average claim cost in euros for components
or qualitatively by considering the branding, the criticality and the cost for sub-systems.

2.4 DEMATEL Methodology

It is well known that the more a component is subjected to the influence of the other com-
ponents, the more the risk of failure is important. A criterion inspired from the DEMATEL
(Decision Making Trial and Evaluation Laboratory) matrix considers the system interac-
tions [7]. The DEMATEL method converts the relationship between the causes and effects
of criteria into an intelligible structural model. It takes into account the direct and indirect
influences among multiple factors. For the proposed allocation method, the DEMATEL
method is used only to consider the influences between systems or components.

According to the DEMATEL method, we built an influences matrix, denoted Z. The
entry zij of this matrix, represents the degree with which the criterion criti affects the
criterion critj. The matrix Z has the following structure

0 z12 · · · z1n
z12 0 · · · z2n
...

...
. . .

...
zn1 zn2 · · · 0

 (7)
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The entries of the Z matrix can have four values that represent the influence level

- 0 is chosen for no influence,

- 1 for low influence,

- 2 for medium influence,

- 3 for high influence.

Let Di be the sum of the elements of the ith row of Z, and Cj the sum of the jth column
of the matrix Z, we have

Di =
n∑

j=1

zij, Cj =
n∑

i=1

zij (8)

The quantity Di represents the sum of the direct influences given by the component or
the subsystem. Similarly, Cj represents the sum of the direct influences received by the
component or the subsystem.

3 Proposed Method

3.1 quality Requirement Allocation Model

The proposed quality allocation method procedure is organized into several steps and is
described as follows

� Step 1. Build a functional breakdown of the studied system into subsystems. Then,
build a functional breakdown of the subsystems into components (see figure 3). It is
also possible to have a more complicated breakdown into four or five levels.

Figure 2: Functional breakdown of the system into subsystems and functional breakdown
of each subsystem into components.
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� Step 2. The quality objective of the complete system FS is defined by Strategy,
Marketing and Quality.

� Step 3. Evaluate the criteria for each subsystem to find the weight of the jth

subsystem W c
j and each component to find the weight of the ith component associated

to the jth subsystem W s
ij. As we will see, these weights are obtained by using the

following data

- Fault Frequency (quantitative),

- Warranty costs (quantitative),

- Life cycle factor(qualitative):

- State of art Design,

- Manufacturing,

- Environment.

The method used to obtain W c
ij and W s

j is presented in paragraphs 3.1.1, 3.1.2 and
3.1.3.

� Step 4. Compute the jth allocated Fault Frequency [F s
j ]target for the subsystem level

and then for the component level (see figure 3). The Fault Frequency allocated to
the jth subsystem is given by

[F s
j ]target = W s

j FS (9)

whereW s
j is the weight associated to the the jth subsystem, and FS is the system Fault

Frequency objective. Similarly, the Fault Frequency allocated to the ith component
of the jth subsystem, is given by

[F c
ij]target = W c

ij[F
s
j ]target (10)

where W c
ij is the weight associated to the the ith component of the considered jth

subsystem.

In the following paragraphs, the method used to obtain W c
ij and W s

j is described. The
paragraph 3.1.1 explains how to obtain the product life cycle factor family. The paragraph
3.1.2 presents the process to compute the field experience factor family and 3.1.3 is dedi-
cated to the computation of W c

ij and W s
j . The figure 4 summarizes the way to obtain the

final weight.

3.1.1 Product Life Cycle Factor Family

The State of art Design S, the Manufacturing and Assembly M and the Environment E
factors are three criteria that influence quality during the Product Cycle Life. Each crite-
rion is qualitatively evaluated by experts between 1 and 10. The value 10 is assigned when
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Figure 3: Allocation principle: The system Fault Frequency objective is allocated to sub-
systems and each subsystem Fault Frequency objective is allocated to components.

the failure risk is the highest (non-mature development, non-controlled process, severe en-
vironment). The value 1 is assigned for the lowest influence of criterion on the failure
risk (mature development, controlled process, non-severe environment). These factors are
combined to define the so called Life Cycle Factors (LCF). The LCF is defined at the
component level as well as at the sub-system level.

Component Level. For the component level, the Life Cycle Factor of the ith component
associated with the jth subsystem, denoted Lc

ij, is defined as the following weighted average

Lc
ij =

aSij + bMij + cEij

a+ b+ c
(11)

where Sij is the State of art Design factor, Mij is the Manufacturing and Assembly factor,
Eij is the Environment factor, i is the component index, j represents the subsystem index, a
is the Design factor weight, b is the Manufacturing factor weight, and c is the Environment
factor weight. These weights are useful when the decision maker wants to give more
importance for one factor compared to the others. In our case, we have chosen to assign
1 to a, b, c, because we have considered that the three factors have the same importance.
Alternatively, these weights can be determined by the preference order approach presented
in Appendix A1. The life cycle factor is then normalized as follows

L̄c
ij =

Lc
ij∑Nj

i=1 L
c
ij

(12)

where Nj is the number of components of the considered jth subsystem.
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Figure 4: Definition of the quality Requirements weight with Field Experience criteria
family and Product Life Cycle criteria Family.

Subsystem Level. For the subsystem level, the Life Cycle Factor of the jth subsystem,
denoted λsj , is defined as follows

λsj =

Nj∑
i=1

Lc
ij (13)

where Lc
ij is the Life Cycle Factor of the ith component attached to the jth subsystem. For

the subsystem level an interaction factor is added to the Life Cycle factor. The interaction
factor is the normalization of the influence matrix columns sum (see section 2.4 DEMATEL
methodology):

Ij =

∑n
i=1 zij∑n

j=1

∑n
j=1 zij

(14)

where Ij is the Interaction Factor of the jth subsystem, zij is the weight of influence of the
ith subsystem on the jth subsystem, and n is the number of subsystems.

The Life Cycle Factor of the jth subsystem that takes into account the interaction factor
is then defined as

Ls
j = dλsj + eIj (15)

where d is the weight of the life cycle factor of the jth subsystem, and e is the weight of
the impact factor factor of the jth subsystem. These weights can be used by the decision
maker to give more importance for one factor compared to the other. Finally, the life cycle
factor is normalized as follows

L̄s
j =

Ls
j∑n

j=1 L
s
j

(16)

where n is the number of subsystems of the considered system.
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3.1.2 Field Experience Factor Family

In this section we introduce successively the Warranty factor, the Fault Frequency factor
and the Field experience factor.

� Warranty Factor

As for the life cycle factor case, the Warranty factor is defined at the component level
as well as at the subsystem level.

Component Level. The warranty cost is defined as the sum of the repaired cost, the
spare cost and the additional costs for each component (see (17)). All these data are
available from the industrial feedbacks. All these costs are available from the industrial
data.

Ψc
ij = Rij + Sij + Aij (17)

where Ψc
ij is the Warranty cost of the ith component associated to the jth subsystem, Rij

is the Repaired cost of the ith component, Sij is the spare cost of the ith component, and
Aij is the additional cost of the ith component.

The Warranty cost is then scaled according to a given cost scale. In fact, this transfor-
mation is used to represent a given cost interval by a score reflecting the goodness of the
warranty cost (a lower cost receives a better score). This allows us to take into account
uncertainties about the warranty costs. In addition, this transformation allows to have a
warranty cost score independent of the industrial application domain (automotive, aircraft,
nuclear power plants etc.). The only thing that changes between the various industrial ap-
plication domains is the mapping between the cost intervals and the scores. This mapping
is done according to the industrial practice existing in a given application domain. Table
1 is given as an example of such a transformation and will be used in the automotive
application provided later on.

Table 1: Example of Warranty Cost scale which summarizes the industrial practice.
Score 10 9 8 7 6 5 4 3 2 1

Interval Cost < 100 100 200 250 400 500 700 1000 1500 ≥ 3000
(Euros) to to to to to to to to

199 249 399 499 699 999 1499 2999

After scaling, the warranty factor is normalized as follows

Ψ̄c
ij =

Ψ̃c
ij∑Nj

i=1 Ψ̃c
ij

(18)

where Ψ̃c
ij represents the score attributed to Ψc

ij.
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Subsystem Level. A qualitative factor is estimated based on the after sales expertise.
The cost, the branding and the criticality are considered. The warranty cost of the jth

subsystem is defined as
Ψs

j = fBj + gCr
j + hCo

j (19)

where Bj is the branding qualitative factor, Cr
j is the criticality qualitative factor, Co

j

is the cost qualitative factor, f is the Branding factor weight, g is the Criticality factor
weight, and h is the Cost factor weight. These three criteria are qualitatively evaluated
by after-sales experts ranging from 1 to 10. So the sum is between 3 and 30. The value
1 is assigned when the criterion is considered as very important by the customer, in other
words when the customers want to have a high quality. The Branding factor measures the
subsystem failure impact on Branding. The Criticality factor represents the importance of
a failure on the subsystem operation. The Cost factor represents the warranty costs. For
this factor, it is possible to build a scale like Table 1. The value 1 is then assigned when
the system must be replaced whereas the value 10 is assigned for a cheaper repair.

The weights f , g, h, can be used to give more importance for one factor compared to
others. In our case, we have chosen to assign 1 to f , g, h, because we have considered that
the three factors have the same importance. Alternatively, these weights can be determined
by the preference order approach presented in Appendix A1. Finally, the warranty factor
is normalized as follows

Ψ̄s
j =

Ψs
j∑n

j=1 Ψs
j

(20)

� Fault Frequency Factor

The subsystem Fault Frequency is given by the sum of all the components Fault Fre-
quency, i.e.

F s
j =

Nj∑
i=1

F c
ij (21)

where F c
ij is the Fault Frequency of the ith component associated to the jth subsystem, and

F s
j is the Fault Frequency of the jth subsystem. As usual, the Fault Frequency factor is

normalized as follows:

- Component Level

F̄ c
ij =

F c
ij∑Nj

i=1 F
c
ij

(22)

- Subsystem Level

F̄ s
j =

F s
j∑n

j=1 F
s
j

(23)
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� Field Experience Factor

The Field Experience factor is defined at the component level as well as at the subsys-
tem level.

Component Level. The Field Experience factor of the ith component associated to the
jth subsystem is defined as

Φc
ij = Ψ̄c

ijF̄
c
ij (24)

where Ψ̄c
ij is given by (18), and F̄ c

ij is given by (22). The Field experience factor is then
normalized as follows

Φ̄c
ij =

Φc
ij∑Nj

i=1 Φc
ij

(25)

Subsystem Level. The Field Experience factor of the jth subsystem is defined as

Φs
j = Ψ̄s

jF̄
s
j (26)

where Ψ̄s
j is given by (20), and F̄ s

j is given by (23). The Field experience factor is then
normalized as follows

Φ̄s
j =

Φs
j∑n

j=1 Φs
j

(27)

3.1.3 Quality Requirement Weight

The quality requirement weights are evaluated at the component level as well as at the
subsystem level.

Component Level. Let Kc
ij be an intermediate factor allowing to take into account the

component Life Cycle factor L̄c
ij see (12) and the Field experience factor Φ̄c

ij see (25), we
have

Kc
ij = oL̄c

ij + pΦ̄c
ij (28)

where o is the weight of the Life Cycle factor, and p is the weight of the Field Experience
factor. The weights o, p, can be used to give more importance for one factor compared to
the other. Alternatively, these weights can be determined by the preference order approach
presented in Appendix A1. The quality requirement weight of the ith component associated
to the jth subsystem is then defined as

W c
ij =

Kc
ij∑Nj

i=1K
c
ij

(29)

Subsystem Level. Let Ks
i be an intermediate factor allowing to take into account the

subsystem Life Cycle factor L̄s
j see (16) and the Field experience factor Φ̄s

j see (27), we
have

Ks
j = oL̄s

j + pΦ̄s
j (30)
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where o and p have the same meaning as before. The quality requirement weight of the
jth subsystem is then defined as

W s
j =

Ks
j∑n

j=1K
s
i

(31)

3.2 Computation Synthesis

The proposed procedure is summarized in figure 5. The main steps are as follows.

1. First, the input data are recovered for subsystems and components.

2. Then, the weight of each item is computed.

3. The system quality objective is allocated into each subsystem depending on the
subsystems weights. For each subsystem, the quality objective is allocated into each
components of the subsystem depending on the component weights.

Figure 5: Computation procedure to allocate the system FF target to subsystems and then
to the components.

4 Case Study

The proposed method is applied on a truck vehicle. The details of the engine subsystems
and the Piston Cylinder Unit components are presented. Since the data are confidential,
false input data are used for the application presented Table 2 and Table 3.
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Table 2: Engine Subsystem inputs. The various weights have been taken as: a = b = c =
f = g = h = o = 1, e = 0.04, and p = 2. The engine FF objective is 20.

Subsystems Ls
j Ij F s

j Bj Cr
j Co

j

Air & gas system 120 8 3 7 9 5
Fuel injection system 110 7 1 5 5 7
Combustion system 0 0 0 0 0 0
Power Cylinder Unit system 24 8 0.5 7 7 7
Crank system 90 6 1 5 9 5
Valve train system 30 4 0.5 4 9 6
Crank Case ventilation system 15 4 1 3 8 3
Auxiliaries drive system 60 3 2 3 7 9
Starter system 5 1 0.3 7 7 5
Engine Lubrication system 75 7 6 6 7 3

Table 3: Components Inputs for Power Cylinder Unit System. The various weights have
been taken as: a = b = c = f = g = h = o = 1, and p = 2

Power Cylinder Unit system (j = 4) Sij Mij Eij Ψc
ij F c

ij

Cylinder Liners 1 4 9 11000 0,06 %
Sealing rings 3 5 2 1500 0,03 %
Piston 2 3 10 9000 0,05 %
Piston rings 5 7 8 5000 0,01 %
Piston pin 4 2 7 2000 0,01 %

In this application we want to give more importance for the Field experience factor than
to the product life cycle factor, that is to say, the experience and the cost are highlighted.
The results are presented Table 4 and Table 5.

The obtained quality requirements have been compared to those obtained via the after
sales service. It has been observed that the quality targets are close to those observed by
the after sales service. To give an idea, the RMS value error calculated for the systems
Fault Frequency and the components Fault Frequency, have been found to be Es = 0.85
and Ec

j = 0.16 respectively. The quantity Es and Ec
j are defined as follows

Es =

√√√√ 1

n

n∑
j=1

(
[F s

j ]target − [F s
j ]obs

)2
, Ec

j =

√√√√ 1

Nj

Nj∑
i=1

(
[F c

ij]target − [F c
ij]obs

)2
(32)

where [F s
j ]obs is the actual fault frequency, in %, observed on jth subsystem over twelve

months. Similarly, [F c
ij]obs is the actual fault frequency, in %, observed on ith component

associated to the jth subsystem, over twelve months. In addition, the allocated Fault
Frequency have been found to be systematically bigger than those actually observed via
the after sales service. This mean that the proposed approach is slightly pessimistic, and
this is an interesting property for the design of industrial products.
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Table 4: Allocation of the Engine combustion system quality target to subsystems
Engine Combustion system [F s

j ]target Subsystem weight W s
j

Air & gas system (j = 1) 3.43% 17.2%
Fuel injection system (j = 2) 2.30% 11.5%
Combustion system (j = 3) 0.00% 0.0%
Power Cylinder Unit system (j = 4) 0.64% 3.2%
Crank system (j = 5) 1.91% 9.6%
Valve train system (j = 6) 0.78% 3.9%
Crank Case ventilation system (j = 7) 1.35% 6.8%
Auxiliaries drive system (j = 8) 2.32% 11.6%
Starter system (j = 9) 0.30% 1.5%
Engine Lubrication system (j = 10) 6.96% 34.8%

Table 5: Allocation of the Power Cylinder Unit quality target to components.
Power Cylinder Unit system (j = 4) [F c

ij]target Component weight W c
ij

Cylinder Liners (i = 1) 0.18% 28.1%
Sealing rings (i = 2) 0.17% 26.6%
Piston (i = 3) 0.16% 25.0%
Piston rings (i = 4) 0.08% 12,5%
Piston pin (i = 5) 0.05% 7.8%

5 Conclusion

For four decades, numerous studies have been published about the reliability allocation;
this interest reflects the strategic importance and the complexity of reliability allocation
problem for many applications. Two types of allocation methods are developed in the
literature: The traditional allocation methods like the AGREE apportionment or ARINC
apportionment that are too simple to answer the specifications of the problem and the
optimization techniques applied to the reliability allocation problem, like meta-heuristics
techniques, which are too time consuming for industrial applications. The FOO technique
and the average weight methods provide a partial answer to our problem.

The proposed method allows to introduce several improvements: First, the model high-
lights the customer aspect by the chosen quality measurement unit, the Fault Frequency,
and by the warranty factors. Secondly, the criteria definition can be different depending on
the allocation level considered. Indeed, a criterion can be relevant for a specific level and
not for an upper level. The best solution depends on the problem scale. Thirdly, two main
factor families are considered to define the weight of each system part for the quality target
allocation. The product life cycle family considers the criteria that will impact the quality
during each life cycle phase and the field experience family uses the company experience
and the warranty cost. Then, the interactions between subsystems are taken into account
thanks to a criterion inspired by the DEMATEL methodology. Finally the weight of each
factor makes the method more flexible. The new method has been successfully applied on
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an automotive example. So, the purpose of this work is achieved: a quality requirements
allocation method is proposed and a quality objective for each component is determined.

The proposed method can be extended to the case of a non-constant failure rate. This
case can be interesting to be studied in particular for long observation time. The hypoth-
esis about the constant failure rate seems to be not relevant in this case. Another line
of research would be to change the way of measuring quality, i.e., to consider alternative
approach to the Fault Frequency measure.

Appendix

A1. Preference Order Weights Selection

In the proposed method, we have to associate a weight to some given factors in accor-
dance with the importance placed in these factors. These weights can be fixed through
experts advice, but this is not always possible. In such situation it is better to choose
among all possible weight distributions the one that is less arbitrary. This last objective
can be reached via the maximum entropy principle (see for instance [5] for a good coverage
of the maximum entropy principle).

According to the maximum entropy principle, the less arbitrary weight distribution is
the one that satisfy the constraints (in our case the preference order) while maximizing
the entropy.

More formally, consider n factors f1, f2, · · · , fn, arranged in the preference order from
the most important to the less important. For instance the arrangement (f1, f2, f3) means
that a more importance is accorded to the factor f1 with respect to f2 and f3, and a more
importance is accorded to f2 with respect to f3. Now, we want to define a weighted average
index, denoted IF , that reflects the preference order of the factors. This index is written
as

IF =

∑n
i=1wifi∑n
i=1wi

(33)

where wi is the weight associated to the factor fi. Since fi is considered as more important
than fi+1 we must satisfy the following constraint

wi > wi+1, i = 1, · · · , n− 1 (34)

The problem is then to determine the less arbitrary weight distribution w1, w2, · · · , wn

satisfying the constraint (34). Note that the constraints (34) can be satisfied with wi

slightly bigger than wi+1. In order to impose a stronger dominance it is better to satisfy
constraints of the form

wi ≥ αi + wi+1, i = 1, · · · , n− 1 (35)

with αi a sufficiently large positive number satisfying

αi ≥ βαi+1, i = 1, · · · , n− 1 (36)

17



where β > 1 is a user defined coefficient. The weighted average index IF defined in (33)
can be equivalently rewritten as

IF =
n∑

i=1

w̃ifi, w̃i =
wi∑n
i=1wi

(37)

Note that
∑n

i=1 w̃i = 1. So, IF is a convex combination of the factor fi. According to what
has been said before, we have to find the less arbitrary weight distribution w̃1, w̃2, · · · , w̃n,
satisfying the constraints

w̃i ≥ αi + w̃i+1, i = 1, · · · , n− 1
αi ≥ βαi+1, i = 1, · · · , n− 1∑n

i=1 w̃i = 1
(38)

By using the maximum entropy principle both for the x̃i’s and the αi’s, we have to solve
the following optimization problem

maximize −
(∑n

i=1 w̃i log(w̃i) +
∑n−1

i=1 αi log(αi)
)

subject to αi ≥ βαi+1, i = 1, · · · , n− 1
w̃i ≥ αi + w̃i+1, i = 1, · · · , n− 1∑n

i=1 w̃i = 1

(39)

Note that this formulation is a convex programming problem, this is in contrast to the
OWA operator introduced in [15]. So, the problem (39) can be efficiently solved (the
global optimum is guaranteed to be found in polynomial time) via existing convex solvers
such as for instance the cvx package [3].
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