
Some heuristic approaches for solving extended
geometric programming problems

R. Toscano1, S. B. Amouri

Université de Lyon
Laboratoire de Tribologie et de Dynamique des Systèmes CNRS UMR5513 ECL/ENISE

58 rue Jean Parot 42023 Saint-Etienne cedex 2

Abstract. In this paper we introduce an extension of standard geometric programming (GP)
problems which we call quasi geometric programming (QGP) problems. The idea behind QGP
is very simple, it means that a problem become GP when some variables are kept constants.
The consideration of this particular kind of nonlinear and possibly non smooth optimization
problem is motivated by the fact that many engineering problems can be formulated, or well
approximated, as a QGP. However, solving a QGP remains a difficult task due to its intrinsic
non-convex nature. This is why we introduce some simple approaches to easily solve this kind
of non-convex problems. The interesting thing is that the proposed methods does not require
the development of a customized solver and works well with any existing solver able to solve
conventional geometric programs. Some considerations on the robustness issue are also presented.
Various optimization problems are considered to illustrate the ability of the proposed methods
for solving a QGP problem. Comparison with previously published works are also given.

Keywords: Non-convex optimization, Geometric Programming, Quasi Geometric Programming,
GP-solver, Robust Optimization.

1 Introduction

Geometric programming (GP) has proved to be a very efficient tool for solving various kinds

of engineering problems. This efficiency comes from the fact that geometric programs can

be transformed to convex optimization problems for which powerful global optimization

methods have been developed. As a result, globally optimal solution can be computed with

great efficiency, even for problems with hundreds of variables and thousands of constraints,

using recently developed interior-point algorithms. A detailed tutorial of GP and compre-

hensive survey of its recent applications to various engineering problems can be found in

[1].

1E-mail address: toscano@enise.fr, Tel.:+33 477 43 84 84; fax: +33 477 43 84 99

1

An important extension of GP is signomial2 geometric programming (SGP). Various

approaches have been proposed to solve SGP, and a lot of specific algorithms, not always

available, have been developed (see for instance [11] and references therein). However,

despite these various contributions, solving a SGP problem remain an open issue. This is

mainly due to the fact that a SGP is inherently non-convex. Indeed, unlike GP problems,

SGP problems remain non-convex in both their primal and dual forms and there is no

transformation able to convexify them. Consequently, only a locally optimal solution of a

SGP can be computed efficiently3.

In this paper we introduce a particular type of nonlinear program which we call quasi

geometric programming (QGP) problems. The idea behind QGP is very simple, it means

that a problem become GP when some variables are kept constants4. For this kind of

problems (QGP), we introduce two approaches for their resolution. The interesting thing

is that the proposed approaches does not require development of new solvers and work well

with any existing solver that is able to solve conventional convex programs (for instance

cvx see [4]). From a practical point of view this is very interesting because the engineers

often do not have the time to develop specific algorithm for solving particular problems.

Finally, one of the main objectives of this work is to introduce some procedures that are

easy to use for solving engineering problems.

The rest of this paper is organized as follows. In section 2, we provide a short in-

troduction to GP. Section 3 is the main part of this paper. It introduces the notion of

quasi geometric programming problems as well as their resolutions using available convex

solvers. In many practical problems, some parameters are not precisely known, this aspect

is discussed in section 4 which is devoted to the robustness issue. In section 5 various

2A signomial is sum of terms of the form cix
a1

i
1 x

a2
i

2 · · ·x
an

i
n where the coefficients ci are allowed to be

negative.
3It is possible to compute the globally optimal solution of a SGP, but this can requires prohibitive

computation, even for relatively small problems.
4As we will see later, QGP include some SGP problems.

2

optimization problems are considered to show how the concept of QGP can be used to

solve them efficiently. We give concluding remarks in section 6.

2 Geometric Programming

GP is a special type of nonlinear, non-convex optimisation problems. A useful property of

GP is that it can be turned into a convex optimization problem and thus a local optimum

is also a global one, which can be computed very efficiently. Since QGP is based on the

resolution of GP, this section gives a short presentation of GP both in standard and convex

form.

2.1 Standard formulation

Monomials are the basic elements for formulating a geometric programming problem. A

monomial is a positive function f defined by:

f(x) = cxa
1

1 x
a2

2 · · ·xa
n

n (1)

where x1, · · ·xn are n positive variables, c is a positive multiplicative constant and the

exponentials ai, i = 1, · · · , n are real numbers. We will denote by x the vector (x1, · · · , xn).

A sum of monomial is called a posynomial:

f(x) =
K∑
k=1

ckx
a1
k

1 x
a2
k

2 · · ·x
ank
n (2)

Minimizing a posynomial subject to posynomial upper bound inequality constraints and

monomial equality constraints is called GP in standard form:

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, · · · ,m

gi(x) = 1, i = 1, · · · , p

(3)

3

where fi, i = 0, · · · ,m, are posynomials and gi, i = 1, · · · , p, are monomials. Note

that monomials and posynomials are always assumed to be positive functions of positive

variables.

2.2 Convex formulation

GP in standard form is not a convex optimisation problem5, but it can be transformed

to a convex problem by an appropriate change of variables and a log transformation of

the objective and constraint functions. Indeed, if we introduce the change of variables

yi = log xi (and so xi = eyi), the posynomial function (2) becomes:

f(y) =
K∑
k=1

ck exp

(
n∑
i=1

aikyi

)
=

K∑
k=1

exp(aTk y + bk) (4)

where bk = log ck, taking the log we obtain f̄(y) = log
(∑K

k=1 exp(aTk y + bk)
)

, which is

a convex function of the new variable y. Applying this change of variable and the log

transformation to the problem (3) gives the following equivalent optimization problem:

minimize f̄0(y) = log
(∑K0

k=1 exp(aT0ky + b0k)
)

subject to f̄i(y) = log
(∑Ki

k=1 exp(aTiky + bik)
)
≤ 0, i = 1, · · · ,m

ḡj(y) = aTj y + bj = 0, j = 1, · · · , p

(5)

Since the functions f̄i are convex, and ḡj are affine, this problem is a convex optimization

problem, called geometric program in convex form. However, in some practical situations,

it is not possible to formulate the problem in standard geometric form, the problem is then

not convex. In this case the problem is generally difficult to solve even approximately.

In these situations, it seems very useful to introduce simple approaches that are able to

compute a good suboptimal solution (if not the global optimum). In this spirit, we are

now ready to introduce the concept of quasi geometric programming.

5A convex optimization problem consists in minimizing a convex function subject to convex inequality

constraints and linear equality constraints.

4

3 Quasi Geometric Programming (QGP)

Consider the nonlinear program defined by

minimize f0(z)

subject to fi(z) ≤ 0, i = 1, · · · ,m

gj(z) = 0, j = 1, · · · , p

(6)

where the vector6 z ∈ Rn
++ include all the optimization variables, f0 : Rn

++ → R is the

objective function or cost function, fi : Rn
++ → R are the inequality constraint functions

and gj : Rn
++ → R are the equality constraint functions. This nonlinear optimization

problem is called a quasi geometric programming problem if it can be formulated into the

following form:

minimize
x, ξ

ϕ0(x, ξ)−Q0(ξ)

subject to ϕi(x, ξ) ≤ Qi(ξ), i = 1, · · · ,m

hj(x, ξ) = Q′j(ξ), j = 1, · · · , p

(7)

where x ∈ Rnx
++ and ξ ∈ R

nξ
++ with nx + nξ = n, (x, ξ) is a partition of vector z. The

functions ϕi(x, ξ), i = 0, · · · ,m are posynomials and hj(x, ξ), j = 1, · · · , p are monomials.

With respect to the nature of the functions Q0, Qi and Q′j, we consider two cases for the

solution of the QGP (7).

1. In the first case, called quasi geometric programming in posynomial form, the func-

tions Q0(ξ), Qi(ξ) and Q′j(ξ) are ratios of posynomial functions and thus are positive

functions.

2. In the second case, called quasi geometric programming in general form, except their

positivity, nothing special is assumed about Q0(ξ), Qi(ξ) and Q′j(ξ), these functions

can be even non-smooth.

6In our notations, R++ represents the set of positive real numbers.

5

It is important to insist on the fact that in these two cases, the problem (7) cannot be

converted into a GP in the standard form (3) and thus the problem is not convex. As a

consequence, no approach exists for finding quickly even a sub optimal solution by using

available convex solvers. Although specific algorithms can be designed to find out a sub

optimal solution to problem (7) both in posynomial or general form, we think that it could

be very interesting to solve these problems by using standard convex solvers. Indeed, this

should be interesting for at least two reasons. Firstly the ability of solving problem (7)

using available convex solvers allows time saving; the development of a specific algorithm

is always a long process and there are often no resources to develop customized approaches

in industry. Secondly, the available convex solvers are efficient and easy to use. Problems

involving tens of variables and hundreds of constraints can be solved on a small current

workstation in less than one second. All these reasons justify the approaches presented in

sections 3.1 and 3.2. Indeed, these methods does not require the development of particular

algorithms and are based on the use of available convex solvers.

3.1 Solution of a QGP in posynomial form

The QGP (7) can be reformulated as follows:

minimize
λ, x, ξ

λ−1

subject to λ+ ϕ0(x, ξ) ≤ Q0(ξ)

ϕi(x, ξ) ≤ Qi(ξ), i = 1, · · · ,m

hj(x, ξ) = Q′j(ξ), j = 1, · · · , p

(8)

where λ ∈ R++ is an additional decision variable. Note that λ + ϕ0(x, ξ) is a posynomial

function. This problem is not solvable as a GP since Q0(ξ), Qi(ξ) and Q′j(ξ) are not mono-

mials. However, for a fixed value of ξ this problem becomes a GP in standard form. This

suggests that the quasi geometric problem (8) can be solved by considering a succession

of GP. The details of the proposed approach for solving a QGP in posynomial form are

6

presented in the procedure below.

P1: Procedure for solving QGP in posynomial form

1. Solve the following standard GP problem:

minimize
λ, x, ξ

λ−1

subject to
(λ+ ϕ0(x, ξ))D(Q0(ξ))

Γ(N (Q0(ξ)))
≤ 1

ϕi(x, ξ)D(Qi(ξ))

Γ(N (Qi(ξ)))
≤ 1, i = 1, · · · ,m

hj(x, ξ)D(Q′j(ξ))

Γ(N (Q′j(ξ)))
≤ 1

N (Q′j(ξ))

hj(x, ξ)Γ(D(Q′j(ξ)))
≤ 1, j = 1, · · · , p

(9)

This gives the solution denoted (x′, ξ∗).

2. For the value ξ∗ solve the following standard GP problem:

minimize
λ, x

λ−1

subject to
λ+ ϕ0(x, ξ∗)

Q0(ξ∗)
≤ 1

ϕi(x, ξ
∗)

Qi(ξ∗)
≤ 1, i = 1, · · · ,m

hj(x, ξ
∗)

Q′j(ξ
∗)

= 1, j = 1, · · · , p

(10)

this gives the optimal solution x∗ w.r.t ξ∗. The final suboptimal solution is given by

(x∗, ξ∗).

7

As this procedure shows, the solution of QGP (7) is decomposed into two main steps. In

the first step, an approximate problem of QGP (7) is solved. The approximation is based on

an optimal lower approximation of a posynomial by a monomial i.e.:
∑

i ui(x1, · · · , xn) ≥

cxa1
1 · · ·xann , where ui are monomials, c is a positive constant and the exponentials a1 · · · an,

are real numbers. In problem (9), Γ(.) represents the optimal lower monomial approxi-

mation obtained from the posynomial given in argument. The optimal lower monomial

approximation of a given posynomial is presented in appendix A2. In our notations, N (.)

and D(.) are, respectively, the numerator and the denominator of the rational posynomial

function passed in argument. The details for the derivation of problem (9) are given in

appendix A1.

Since lower monomial approximations are used, the set of feasible solutions of problem

(9) is a convex subset of the set of feasible solutions of QGP (7) (see the details in appendix

A1). Therefore, the value ξ∗ found by solving problem (9) is always feasible for QGP

problem (7). In the second step, QGP (7) is solved with the value of ξ = ξ∗ found at

the first step. QGP (7) with ξ kept constant becomes a standard GP, its solution leads

to the optimal value x∗. The solution thus obtained (x∗, ξ∗) is a good suboptimal solution

of QGP (7) in the sense that ϕ(x∗, ξ∗) ≤ ϕ(x′, ξ∗) where (x′, ξ∗) is the global solution of

problem (9).

Remark 1. As already said, the optimal solution, say (x′−, ξ
∗
−), of GP (9) is also a

feasible solution of QGP (8) and since the domain of feasible solutions of (9) is a subset

of the domain of feasible solutions of QGP (8) we have ϕ(xopt, ξopt) ≤ ϕ(x′−, ξ
∗
−), where

(xopt, ξopt) is the global solution of QGP (8). If instead of lower-monomial approximations

we utilize in (9) upper-monomial approximations, the solution, say (x′+, ξ
∗
+), of GP (9)

satisfies ϕ(x′+, ξ
∗
+) ≤ ϕ(xopt, ξopt), this is because in this case, the set of feasible solutions of

GP (9) with upper-monomial approximations includes the set of feasible solutions of QGP

(8). Finally, by considering the GP (9) with upper-lower monomial approximations, it is

8

guaranteed that the global optimum of QGP (8) is within the bounds:

ϕ(x′+, ξ
∗
+) ≤ ϕ(xopt, ξopt) ≤ ϕ(x′−, ξ

∗
−)

where (x′+, ξ
∗
+) is the global solution of GP (9) with upper-monomial approximations and

(x′−, ξ
∗
−) is the global solution of GP (9) with lower-monomial approximations.

Remark 2. Problem (9) is a convex restriction of the original problem (7). Therefore,

problem (9) can be infeasible even if (7) is feasible. In this situation, we can solve a relaxed

problem using upper monomials approximation (see appendix A2)), if the solution thus

found is feasible for the original problem (7), this means that we have found the optimal

solution. In the case where the solution of the relaxed problem is infeasible for the original

problem it is always possible to solve (7) using the method for solving a QGP in general

form (see section 3.2).

The solution (x∗, ξ∗) obtained via procedure P1 can be further improved by looking for

a better one in the vicinity of (x∗, ξ∗). A good way to do that is to iteratively solve a linear

approximation of the original problem (7) around the solution found so far. The principle

is to select a starting point (in our case the solution found via procedure P1), and the

original problem (7) is linearized about this point to give a linear problem which can be

efficiently solved using any convex solver. The solution thus found is then used as a new

point to linearize the problem (7). This process of resolution continues until no further

improvement can be found. More precisely, the principle of the method is presented in the

following iterative procedure.

P2: Algorithm for the improvement of a given suboptimal solution

1. Let (x′, ξ′) be the solution found using the procedure P1 and select the precision

tolerance ε (e.g. 10−4).

9

2. Solve the following linear problem:

minimize
x, ξ

ϕ0(x′, ξ′)−Q0(ξ′) +∇xϕ0(x′, ξ′)T (x− x′)

+ (∇ξϕ0(x′, ξ′)−∇ξQ0(ξ′))T (ξ − ξ′)

subject to ϕi(x
′, ξ′)−Qi(ξ

′) +∇xϕi(x
′, ξ′)T (x− x′)

+ (∇ξϕi(x
′, ξ′)−∇ξQi(ξ

′))T (ξ − ξ′) ≤ 0, i = 1, · · · ,m

hj(x
′, ξ′)−Q′j(ξ′) +∇xhj(x

′, ξ′)T (x− x′)

+
(
∇ξhj(x

′, ξ′)−∇ξQ
′
j(ξ
′)
)T

(ξ − ξ′) = 0, j = 1, · · · , p

(x− x′, ξ − ξ′) ∈ ∆

(11)

This gives the current local solution denoted (x∗, ξ∗).

3. If ‖(x∗, ξ∗) − (x′, ξ′)‖ > ε, set (x′, ξ′) := (x∗, ξ∗) go to 2, else end of the algorithm.

The final solution is given by (x∗, ξ∗).

It is usually necessary to bound the steps taken in the iterations to ensure that the decision

variables remain in the feasible domain. These bound are the additional constraints (x−

x′, ξ − ξ′) ∈ ∆, where the “size” of ∆ defines the extent of the domain in which the linear

approximation can be considered as a valid one. However, since we start with a good

suboptimal solution, the choice of ∆ is usually easy to do.

3.2 Solution of a QGP in general form

In this section, the only particular assumption made about the functions Q0(ξ), Qi(ξ) and

Q′j(ξ), is that they are positive. Except for their positivity, no other particular assumption

is made; these functions can be even non-smooth.

10

To solve this kind of problem, we can see the QGP (7) like a function of ξ that we want

to minimize:

minimize
ξ

F (ξ) = J(ξ)−Q0(ξ)

subject to ξ ≤ ξ ≤ ξ̄
(12)

where ξ and ξ̄ are simple bound constraints on the decision variable ξ, and the function

J(ξ) is defined as follows:

J(ξ) = min
x

ϕ0(x, ξ)

s. t. ϕi(x, ξ) ≤ Qi(ξ), i = 1, · · · ,m

hj(x, ξ) = Q′j(ξ), j = 1, · · · , p

(13)

Problem (12) is a non-convex unconstrained optimization problem7 and can be solved

using well known zero order algorithms8 such as: Nelder-Mead simplex method (NMSM)

[8], simulated annealing (SA) [10], genetic algorithm (GA) [5], particle swarm optimization

(PSO) [9] or Heuristic Kalman Algorithm (HKA) [15]. In the case where the objective

function F (ξ) in (12) is differentiable, we can also use a multi-start first order or second

order methods to solve this problem. The code associated to these various algorithms

are easily available and thus don’t need to be programmed9. When ξ is kept constant,

problem (13) is a standard GP which can be solved very efficiently using available convex

solvers. This suggests that we can solve the QGP problem in general form with a two levels

procedure. At the first level, the chosen search algorithm (eg. NMSM) is used to select a

value of ξ within the bounds. For the selected value of ξ, the standard GP (13) is solved

using available solvers. This procedure is continued until some stopping rule is satisfied.

The suggested procedure is formalized more precisely in the following algorithm.

7We have only simple bound constraints on the decision variable ξ.
8Zero order algorithms does not require the knowledge of the derivatives of the objective function. Thus

smoothness is not required.
9For instance, the Nelder-Mead simplex method is available in MatLab trough the function fminsearch.

11

P3: Algorithm for solving QGP in general form

1. If a good initial guess (x′, ξ′) is available set Fbest := ϕ0(x′, ξ′) − Q0(ξ′), else set

Fbest := inf.

2. Using a zero order algorithm (ZOA), generate ξ∗ such that ξ ≤ ξ∗ ≤ ξ̄.

3. For the value ξ∗ solve the standard GP problem (13). This gives the optimal solution

x∗ w.r.t ξ∗.

4. If problem (13) is not feasible, then set F := inf and goto 2. Else set F :=

ϕ0(x∗, ξ∗)−Q0(ξ∗).

5. If F ≥ Fbest then goto 2. Else set Fbest := F , xbest := x∗, ξbest := ξ∗ and goto 2.

6. At the end of the ZOA, the optimal solution is given by (xbest, ξbest).

In this algorithm, inf represents the IEEE arithmetic representation for positive infin-

ity, and Fbest is a variable containing the current best objective function. Note that the

use of “global optimization methods” like SA, GA, PSO or HKA, increases the probability

of finding a global optimum but this is not guaranteed, except perhaps if the search space

of problem (12) is explored very finely, but this cannot be done in a reasonable time.

Remark 3. To speed up the convergence, it is desirable to start this algorithm with a

good initial guess (x′, ξ′). Indeed, in the first level, a value of ξ is selected within the

bounds ξ, ξ̄, but this value of ξ is not necessarily feasible for the GP problem. As a

consequence, a very long time can be spent to find a feasible ξ. Thus the computation

time can be strongly improved by using a good starting point. A good initial guess can be

12

obtained by solving the following GP problem:

minimize
ξ

λ−1

subject to λ+ ϕ0(x, ξ) ≤ Γε(Q0(ξ))

ϕi(x, ξ) ≤ Γε(Qi(ξ)), i = 1, · · · ,m

hj(x, ξ) = Γε(Q
′
j(ξ)), j = 1, · · · , p

(14)

which is an approximation of the considered QGP problem. The notation Γε(.) represents

the ε -approximation of the function passed in argument (see appendix A2).

4 Robustness issue

Until now it was implicitly assumed that the parameters (i.e. the problem data) which

enter in the formulation of a QGP problem are precisely known. However, in many practical

applications some of these parameters are subject to uncertainties. It is then important

to be able to calculate solutions that are insensitive to parameters uncertainties; this

leads to the notion of optimal robust design. We say that the design is robust, if the

various specifications (i.e. the constraints) are satisfied for a set of values of the parameters

uncertainties. In this section we show how to use the methods presented above to develop

designs that are robust with respect to some parameters uncertainties.

Let θ = [θ1 θ2 · · · θq]T be the vector of uncertain parameters. It is assumed that θ (also

called the parameter box) lie in a bounded set Θ defined as follows:

Θ =
{
θ ∈ Rq : θ � θ � θ̄

}
, (15)

where the notation � denotes the componentwise inequality between two vectors: v � w

means vi 6 wi for all i. The vectors θ = [θ1 · · · θq]T , θ̄ = [θ̄1 · · · θ̄q]T are the bounds

of uncertainty of the parameters vector θ. Thus, the uncertain vector belong to the q-

dimensional hyperrectangle Θ also called the parameter box. In these conditions, the

QGP problem (7), or equivalently (8), must be expressed in term of functions of (x, ξ), the

13

design variables, and θ the vector of uncertain parameters. The robust version of the quasi

geometric problem (8) is then written as follows:

minimize
λ, x, ξ

λ−1

subject to λ+ ϕ0(x, ξ, θ) 6 ϕ′0(ξ, θ), ∀θ ∈ Θ

ϕi(x, ξ, θ) 6 Qi(ξ, θ), i = 1, · · · ,m, ∀θ ∈ Θ

hj(x, ξ, θ) = Q′j(ξ, θ), j = 1, · · · , p, ∀θ ∈ Θ

(16)

where the functions ϕi, i = 0, · · · ,m, are posynomial functions of (x, ξ), for each value of

θ, and the functions hj, j = 1, · · · , p, are monomial functions of (x, ξ), for each value of θ.

In the case of a QGP in posynomial form, the function ϕ′0, is posynomial for each value of

θ, and the functions Qi and Q′j are ratio of posynomial functions for each θ. In the case of

a QGP in general form, the functions ϕ′0, Qi and Q′j are only assumed to be positive for

each θ. The approach proposed in this section apply both in the case of a robust QGP in

posynomial form and robust QGP in general form.

We consider the resolution of the robust QGP problem in the case of a finite set.

Let ΘN = {θ(1), θ(2), · · · , θ(N)} be a finite set of possible vector parameter values. This

finite set may (can) be imposed by the problem itself or can be obtained by sampling the

continuous set Θ defined in (15). For instance, we might sample each interval [θi, θ̄i] with

three values: θi,
θi+θ̄i

2
and θ̄i, and form every possible combination of parameter values,

this lead to N = 3q different vector parameters.

Whatever how the finite set is obtained, we have to determine a solution (x, ξ) that

satisfy the QGP problem for all possible vector parameters. To do that, we have only to

replicate the constraints for all possible vector parameters. Thus, in the case of a finite set

ΘN , the robust QGP problem is formulated as follows:

14

minimize
λ, x, ξ

λ−1

subject to λ+ ϕ0(x, ξ, θ(k)) 6 ϕ′0(ξ, θ(k)), k = 1, · · · , N

ϕi(x, ξ, θ
(k)) 6 Qi(ξ, θ

(k)), i = 1, · · · ,m, k = 1, · · · , N

hj(x, ξ, θ
(k)) = Q′j(ξ, θ

(k)), j = 1, · · · , p, k = 1, · · · , N

(17)

Whit respect to the nature of the functions ϕ′0, Qi and Qj, problem (17) can be solved as

a QGP problem in posynomial form (see section 3.1) or as a QGP problem in general form

(see section 3.2).

5 Numerical examples

In this section we illustrate the applicability of the proposed methods through some nu-

merical examples (which are all come from the literature). For all these examples we have

used the GP solver cvx [4], and the implementation has been done on a Intel core 2 CPU

2GHz with 512MB memory microcomputer. The computational results are compared with

several other existing methods to show the practical interest of the proposed approach. In

our experiments, the number of calls relative to QGP represents the number of time that

the solver is launched. In the other cases, the number of calls represents the number of

evaluations of all constraints and objective function.

5.1 Example 1

This first example is borrowed from [11] in which the problem was solved using a global

optimization algorithm via Lagrangian relaxation.

minimize 0.5x1x
−1
2 − x1 − 5x−1

2

subject to 0.01x2x
−1
3 + 0.01x2 + 0.0005x1x3 ≤ 1

70 ≤ x1 ≤ 150, 1 ≤ x2 ≤ 30, 0.5 ≤ x3 ≤ 21

15

This problem can be rewritten as follows:

minimize λ−1

subject to
λ+ 0.5x1x

−1
2

x1 + 5x−1
2

≤ 1

0.01x2x
−1
3 + 0.01x2 + 0.0005x1x3 ≤ 1

70 ≤ x1 ≤ 150, 1 ≤ x2 ≤ 30, 0.5 ≤ x3 ≤ 21

which is QGP in the variables (x1, x2). The method of section 3.1, was applied to solve this

optimization problem and the solution found is presented in Table 1. It can be seen that

the solution thus obtained is very significantly better than that found using the method

described in [11]. Note that the QGP-solution cannot be improved since the variables x1

and x2 are on the bounds. We can then say that the solution found is global.

Table 1: Comparison of the solutions found via the method in [11] and QGP.

Method x1 x2 x3 f0 Nb of calls

[11] 88.6274 7.9621 1.3215 -83.6898 1754

QGP 149.9999 29.9999 2.0269 -147.6666 2

5.2 Example 2

This second example is borrowed from [17] in which the problem was solved using a specific

optimization algorithm for generalized geometric programming problems.

minimize x1

subject to 3.7x−1
1 x0.85

2 + 1.985x−1
1 x2 + 700.3x−1

1 x−0.75
3 ≤ 1

0.7673x0.05
3 ≤ 1 + 0.05x2

5 ≤ x1 ≤ 15, 0.1 ≤ x2 ≤ 5, 380 ≤ x3 ≤ 450

This problem is QGP in x2 and thus can be solved using the method of section 3.1. The

solution found is presented in Table 2 which shows also the result obtained in [17].

16

Table 2: Comparison of the solutions found via the method in [17] and QGP.

Method x1 x2 x3 f0 Nb of calls

[17] 11.9538 0.8150 445.1249 11.9538 67

QGP 12.0097 0.8369 449.9999 12.0097 2

It can be seen that the obtained result is a very good suboptimal solution and was

found without any particular effort: only two GP-solver calls.

5.3 Example 3

This third example is borrowed from [17, 11]. The problem to solve is defined as:

minimize x0.8
3 x1.2

4

subject to x1x
−1
4 + x−1

2 x−1
4 ≤ 1

x3 ≤ x−2
1 + x2

0.1 ≤ x1 ≤ 1, 5 ≤ x2 ≤ 10, 8 ≤ x3 ≤ 15, 0.01 ≤ x4 ≤ 1

which is QGP in (x1, x2) and thus can be solved using the method of section 3.1. The

solution found is presented in Table 3 which shows also the results obtained in [17, 11].

Table 3: Comparison of the solutions found via the methods in [17, 11] and QGP.

Method x1 x2 x3 x4 f0 Nb of calls

[17] 0.1358 9.9324 8.6973 0.2365 1.0000 171

[11] 0.1015 7.3197 8.0169 0.2395 0.9514 175

QGP 0.1000 9.9999 8.0000 0.1999 0.765 2

It can be seen that the obtained solution is much better than that found in [17, 11].

17

5.4 Example 4

This example is borrowed from [6] in which the problem was solved using a co-evolutionary

particle swarm optimization. In this problem, the objective is to minimize the total cost

including the cost of the material, forming and welding of a cylindrical vessel.

minimize 0.6224x1x3x4 + 1.7778x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

subject to −x1 + 0.0193x3 ≤ 0

−x2 + 0.009543x3 ≤ 0

−πx2
3x4 − 4

3
πx3

3 + 1296000 ≤ 0

1 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200

By introducing an additional variable x5, this problem can be reformulated as follows:

minimize 0.6224x1x3x4 + 1.7778x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3

subject to 0.0193x3/x1 ≤ 1, 0.009543x3/x2 ≤ 1

1296000

πx3
3(x5 + 4/3)

≤ 1,
x4

x3x5

= 1

1 ≤ x1, x2 ≤ 99, 10 ≤ x3, x4 ≤ 200, 1
20
≤ x5 ≤ 20

which is QGP in x5. The method of section 3.1, was applied to solve this optimization

problem and the solution found is presented in Table 4. It can be seen that the solution

thus obtained is significantly better than that found using the method described in [6].

Table 4: Comparison of the solutions found via the method in [6] and QGP.

Method x1 x2 x3 x4 f0 Nb of calls

[6] 0.8125 0.4375 42.0913 176.7465 6061.0777 32500

QGP 0.7785 0.3848 40.3366 199.7631 5885.8942 2

5.5 Example 5

A welded beam is designed for minimum cost subject to constraints on shear stress τ(x),

bending stress in the beam σ(x), buckling load on the bar Pc, end deflection of the beam

18

δ(x), and side constraints. The problem can be mathematically formulated as follows [12]:

minimize (1 + c1)x2
1x2 + c2x3x4(L+ x2)

subject to τ(x)− τmax ≤ 0, σ(x)− σmax ≤ 0

g3(x) = x1 − x4 ≤ 0, hmin − x1 ≤ 0

g4(x) = c1x1 + c2x3x4(L+ x2)− 5 ≤ 0

δ(x)− δmax ≤ 0, P − Pc(x) ≤ 0

0.1 ≤ x1, x4 ≤ 2, 0.1 ≤ x2, x3 ≤ 10

(18)

where

τ(x) =

√
τ 2

1 + 2τ1τ2
x2

2R
+ τ 2

2 , τ1 =
P√

2x1x2

, τ2 =
MR

I

M = P
(
L+

x2

2

)
, R =

√
x2

2

4
+

(
x1 + x3

2

)2

,

I = 2
{√

2x1x2

[
x2
2

12
+
(
x1+x3

2

)2
]}

, σ(x) =
6PL

x4x2
3

,

δ(x) = 4PL3

Ex2
3x4
, Pc(x) =

4.013E
√
x2
3x

6
4/36

L2

(
1− x3

2L

√
E
4G

)
(19)

and

c1 = 0.10471, c2 = 0.04811, P = 6× 103, L = 14,

E = 3× 107, G = 1.2× 107, hmin = 0.125,

δmax = 0.25, τmax = 1.36× 104, σmax = 3× 104

(20)

In [2] this problem has been solved using a multi-objective genetic algorithm. More

recently, in [6], this problem has been solved using a co-evolutionary particle swarm opti-

mization. This problem is QGP in the variables (x1, x2, x3) and thus can be solved using

the method of section 3.1. From Table 5, it can be seen that the solution thus obtained is

better than those previously obtained.

19

Table 5: Comparison of the solutions found via the methods in [2, 6] and QGP.

Method x1 x2 x3 x4 f0 Nb of calls

[2] 0.2059 3.4713 9.0202 0.2064 1.7282 80000

[6] 0.2023 3.5442 9.0482 0.2057 1.7280 200000

QGP 0.2057 3.2718 9.0366 0.2057 1.6978 2

5.6 Example 6

This example is borrowed from [3] in which the problem was solved using a constrained

particle swarm optimizer. This problem is related to the design of a speed reducer. The

objective is to minimize the weight of the speed reducer subject to constraints on bending

stress of the gear teeth, surface stress, transverse deflections of the shafts and stresses in

the shaft. The corresponding optimization problem is formulated as follows:

minimize 0.7854x1x
2
2(3.3333x2

3 + 14.9334x3 − 43.0934)

−1.508x1(x2
6 + x2

7) + 7.4777(x3
6 + x3

7) + 0.7854(x4x
2
6 + x5x

2
7)

subject to
27

x1x2
2x3

≤ 1,
397.5

x1x2
2x

2
3

≤ 1,
1.93x3

4

x2x3x4
6

≤ 1,
1.93x3

5

x2x3x4
7

≤ 1

1.0

110x3
6

√(
745.0x4

x2x3

)2

+ 16.9× 106 ≤ 1

1.0

85x3
7

√(
745.0x5

x2x3

)2

+ 157.5× 106 ≤ 1

x2x3

40
≤ 1,

5x2

x1

≤ 1,
x1

12x2

≤ 1

1.5x6 + 1.9

x4

≤ 1,
1.1x7 + 1.9

x5

≤ 1

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3

7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

20

This problem can be rewritten into the following form:

minimize λ−1

subject to (λ+ ϕ0)/x1 ≤ ϕ′0
27

x1x2
2x3

≤ 1,
397.5

x1x2
2x

2
3

≤ 1,
1.93x3

4

x2x3x4
6

≤ 1,
1.93x3

5

x2x3x4
7

≤ 1

1.0

110x3
6

√(
745.0x4

x2x3

)2

+ 16.9× 106 ≤ 1

1.0

85x3
7

√(
745.0x5

x2x3

)2

+ 157.5× 106 ≤ 1

x2x3

40
≤ 1,

5x2

x1

≤ 1,
x1

12x2

≤ 1

1.5x6 + 1.9

x4

≤ 1,
1.1x7 + 1.9

x5

≤ 1

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3

7.8 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5

where ϕ0 and ϕ′0 are defined as follows:

ϕ0 = 0.7854x1x
2
2x3(3.3333x3 + 14.9334) + 7.4777(x3

6 + x3
7) + 0.7854(x4x

2
6 + x5x

2
7)

ϕ′0 = 33.8456x2
2 + 1.508(x2

6 + x2
7)

Thus, this equivalent problem is QGP in (x2, x6, x7). The method of section 3.1 was applied

to solve this optimization problem and the solution found is presented in Table 6.

Table 6: Comparison of the solutions found via the method in [3] and QGP.

Method x1 x2 x3 x4 x5 x6 x7 f0 Nb of calls

[3] 3.5000 0.7 17 7.3000 7.8000 3.3502 5.2867 2996.3481 24000

QGP 3.5000 0.7 17 7.3000 7.8000 3.3498 5.2867 2996.2376 5

It is observed that the solution found is very very close to the solution obtained in [3]

with however a slightly lower cost function value. It is worth noting that the best solution

found in [3] was obtained in 30 runs with 24000 function evaluations per run.

21

5.7 Example 7

In this last example, we consider the optimal design of a spiral inductor on silicon. The

problem to solve can be formulated as follows [7]:

minimize Q−1

subject to Ls = Lreq

ωsr ≥ ωsr,min

din + 2n(w + s) ≤ dout

s ≥ smin, w ≥ wmin

din ≥ din,min, dout ≤ dout,max

(21)

where Lreq id the desired inductance value, L is the inductance expression which depends

uppon the geometry of the inductor, namely: the number of turns n, the turn width w,

the turn spacing s, the inner diameter din and the outer diameter dout. These parameters

are typically the design variables of the inductor. The quantities Q and ωsr represents,

respectively, the quality factor and the self-resonance frequency:

Q =
ωLs
Rs

Rp

[
1− R2

s(Cs+Cp)

Ls
− ω2Ls(Cs + Cp)

]
Rp +

[(
ωLs
Rs

)2

+ 1

]
Rs

, ωsr =

√
1− R2

s(Cs+Cp)

Ls

Ls(Cs + Cp)

The inductance Ls, and the resistances and capacitances Rs, Cs, Rp, Cp are defined as

follows:

Ls = k1n
2z(din, dout), Rs = k2n(din + dout)/w, Cs = k3nw

2

Rp = 2k7/(nw(din + dout)), Cp = (k8 + k9)nw(din + dout)/2
(22)

The function z(din, dout) and the constants k1, k2, k3, k7, k8 and k9 are given by:

z(din, dout) = c1(ln(c2/r) + c3r + c4r
2), r = (dout − din)/(dout + din)

k1 = 2π10−7, k2 = ηρ/(d(1− e−t/δ)), η = c5 tan(π/c5), δ =
√

5× 106ρ/(πω)

k3 = εox/tox,M1−M2 , k4 = ηεox/(2tox), k5 = ηCsub/2, k6 = 2/(ηGsub)

k7 = 1/(ω2k2
4k6) + k6(k4 + k5)2/k2

4, k8 = k4/(1 + ω2(k4 + k5)2k2
6)

k9 = k4ω
2(k4 + k5)k5k

2
6/(1 + ω2(k4 + k5)2k2

6)

22

where the parameters c1, c2, c3, c4, c5 depend upon the shape of the inductor (square,

hexagonal, octagonal or circular); the parameters ρ, t, εox, tox, tox,M1−M2 , Csub, Gsub are

technology dependent, and ω is the working frequency of the inductor.

Problem (21) can be formulated as a QGP problem. Indeed, after some basic manipu-

lations we get the following equivalent problem:

minimize q−1

subject to qRs
ωLsRp

(
ω2L2

s

Rs
+Rs +Rp

)
+ (Cs + Cp)

(
R2
s

Ls
+ ω2Ls

)
≤ 1

Ls = Lreq

ω2
sr,minLs(Cs + Cp) +R2

s(Cs + Cp)/Ls ≤ 1

din + 2n(w + s) ≤ dout

s ≥ smin, w ≥ wmin

din ≥ din,min, dout ≤ dout,max

(23)

where q is an additional variable, Ls, Rs, Cs, Rp and Cp are given by (22). Thus formulated,

the problem (23) is QGP in the design variables din and dout and so can be efficiently solved

using the approach described in section 3.2.

Problem (23) has been solved using the Nelder-Mead simplex method based QGP

(NMSM-QGP), the results thus obtained were then compared to those obtained using

a standard genetic algorithm (GA). In our experiments, the following parameters have

been used:

c1 = 1.27, c2 = 2.07, c3 = 0.18, c4 = 0.13, c5 = 4, ρ = 2× 10−8Ωm

t = 10−6m, ω = 3π × 109rad/s, εox = 3.45× 10−11F/m, tox = 4.5× 10−6m

tox,M1−M2 = 1.3× 10−6m, Csub = 1.6× 10−6F/m2, Gsub = 4× 104S/m2

smin = wmin = 1.9× 10−6m, din,min = 10−4m, dout,max = 4× 10−4m

ωsr,min = 8π × 109rad/s, Lreq = 30× 10−9H.

The solutions found via NMSM-QGP and GA are presented in Table 7. As we can see, the

result obtained using NMSM-QGP is significantly better than the solution found by GA.

23

Table 7: Comparison of the solutions found via GA (with N = 200, NG = 150, pc = 0.7,

pm = 0.07) and NMSM-QGP (with the starting point (din = 200, dout = 300).

n w s din dout Ls Q Nb of calls

GA 9.440 4.491 3.73 147.603 309.069 29.99 2.821 30000

NMSM-QGP 10.862 3.683 1.90 111.54 232.824 30.00 3.233 47

6 Conclusion

In this paper an important extension of standard geometric programming (GP), called

quasi geometric programming (QGP) problems, was introduced. The consideration of this

kind of problems is motivated by the fact that many engineering problems can be formu-

lated, or well approximated, as a QGP. Thus, the problem of solving a given QGP appears

of great practical importance. However, the resolution of a QGP is difficult due to its non-

convex nature. The main contribution of this paper was to show that a given QGP can be

efficiently solved via GP which represent exactly the original problem when some variables

are held constant. In addition, the proposed approach does not require the development of

new solvers and works well with any existing solver that are able to solve convex problems.

This feature is important for time saving reasons. Numerical applications have shown that

the results obtained by applying the proposed method are often better than those obtained

via any other approaches. Moreover, if the QGP problem is feasible, our approach never

fails to find out, in a reasonable time, a very good suboptimal solution. This is not so

surprising since we do not solve the QGP problem in a blind manner. On the contrary,

the proposed approach takes into account the particular structure of the problem to be

solved. Indeed, QGP becomes a standard GP when some variables are kept constant. This

important property has been exploited for efficiently solving the considered problem. In

fact, the main difficulty we have encountered is to recognize if a given problem is QGP

or not. Indeed, very often this is not obvious at the first glance and some mathematical

manipulations and/or transformations must be done to see if the underlying problem is

24

QGP.

Appendix

A1. derivation of problem (9)

The quasi geometric problem (7), can be rewritten as follows:

minimize
λ, x, ξ

λ−1

subject to λ+ ϕ0(x, ξ) ≤ N (Q0(ξ))

D(Q0(ξ))

ϕi(x, ξ) ≤
N (Qi(ξ))

D(Qi(ξ))
, i = 1, · · · ,m

hj(x, ξ) =
N (Q′j(ξ))

D(Q′j(ξ))
, j = 1, · · · , p

(24)

where N (.) and D(.) are, respectively, the numerator and the denominator of the rational
posynomial function passed in argument. Since D(Q0(ξ) > 0, D(Qi(ξ) > 0 i = 1, · · · ,m
and D(Q′j(ξ) > 0 j = 1, · · · , p, formulation (24) is equivalent to the following optimization
problem:

minimize
λ, x, ξ

λ−1

subject to (λ+ ϕ0(x, ξ))D(Q0(ξ)) ≤ N (Q0(ξ))

ϕi(x, ξ)D(Qi(ξ)) ≤ N (Qi(ξ)), i = 1, · · · ,m

hj(x, ξ)D(Q′j(ξ)) ≤ N (Q′j(ξ))

hj(x, ξ)D(Q′j(ξ)) ≥ N (Q′j(ξ)), j = 1, · · · , p

(25)

Let S be the set of feasible solutions of (25), i.e. the set of decision variables satisfying
the constraints. This set is not convex and thus the underlying optimization problem is
very hard to solve. However, problem (25) can be efficiently solved over a convex subset
of S. To do that, we can use the optimal lower monomial approximation of a posynomial
(see appendix A2). We denote by Γ(p(x)) the optimal lower monomial approximation of
the posynomial p(x), i.e. we have: Γ(p(x)) ≤ p(x) and the difference p(x)− Γ(p(x)) is the

25

smallest possible. This led to the following convex optimization problem10:

minimize
λ, x, ξ

λ−1

subject to
(λ+ ϕ0(x, ξ))D(Q0(ξ))

Γ(N (Q0(ξ)))
≤ 1

ϕi(x, ξ)D(Qi(ξ))

Γ(N (Qi(ξ)))
≤ 1, i = 1, · · · ,m

hj(x, ξ)D(Q′j(ξ))

Γ(N (Q′j(ξ)))
≤ 1

N (Q′j(ξ))

hj(x, ξ)Γ(D(Q′j(ξ)))
≤ 1, j = 1, · · · , p

(26)

This standard GP is convex under a log transformation and since

Γ(N (Q0(ξ))) ≤ N (Q0(ξ))
Γ(N (Qi(ξ))) ≤ N (Qi(ξ)), i = 1, · · · ,m
Γ(N (Q′j(ξ))) ≤ N (Q′j(ξ))
hj(x, ξ)Γ(D(Q′j(ξ))) ≤ hj(x, ξ)D(Q′j(ξ)), j = 1, · · · , p

(27)

the set of feasible solutions of (26) is a convex subset of S. The global optimum of problem
(26) is then, at least, a suboptimal solution of problem (24).

A2. Optimal lower (upper) monomial approximation and optimal
ε -approximation

Consider a positive function f : X ⊂ Rn
++ → R not necessarily in posynomial form.

The objective is to find a monomial:

Γ(f(x)) = cxa1
1 · · · xann (28)

satisfying:
Γ(f(x)) ≤ f(x), ∀x ∈ X (29)

and in addition, it is required that Γ(f(x)) must be close as possible to f(x). In the least-
squares sense, this problem is solution of a nonlinear constrained 2-norm minimization
problem:

minimize ‖f(x)− Γ(f(x))‖2
2

subject to Γ(f(x)) ≤ f(x)

x = (x1, · · · , xn) ∈ X

(30)

10Strictly speaking this problem is not convex as it is, however, using the log transformation presented
in section 2.2 we get a convex formulation.

26

A good approximate solution to this problem can be found by using data points:

(x(i), f(x(i))), i = 1, · · ·N (31)

drawn within X according to a uniform probability distribution. Indeed, taking the log of
the monomial (28) and the log of the positive function f gives respectively:

L =

 1 log(x
(1)
1) · · · log(x

(1)
n)

...
...

...
...

1 log(x
(N)
1) · · · log(x

(N)
n)

 , p =

log c
a1
...
an

 , q =

 log(f(x(1)))
...

log(f(x(N)))

 (32)

We want to determine p so that11 Lp � q with Lp as close as possible to q. This can be
done by solving the following 2-norm constrained problem:

minimize ‖Lp− q‖2
2

subject to Lp � q
(33)

This is a convex optimization problem which can be solved using available solver like for
instance cvx. In the same way, the optimal upper monomial approximation can be obtained
by solving the convex problem:

minimize ‖Lp− q‖2
2

subject to Lp � q
(34)

The main difficulty is how to determine the minimum number of samples N required so
that Γ(f(x)) ≤ f(x) is satisfied for all x ∈ X with high probability. It can be shown (see
[16]) that, given two positive numbers: ρ close to 1 (e.g. 0.999) and e close to zero (e.g.

10-3), if the number of samples satisfies N ≥ log(1−ρ)
log(1−e) , then inequality Γ(f(x)) ≤ f(x) is

satisfied for all x ∈ X with a probability at least ρ, except possibly for some x belonging
to a set of measure no larger than e. In our experiments we have used ρ = 0.999 and
e = 6× 10−4 which gives N ≥ 11510, thus the lower (or upper) monomials approximation
are satisfied with a probability at least 0.999.

The lower-upper monomial approximation principle can be combined to a form that we
call the ε -approximation of a positive function by monomials. In this case, the objective
is to find a monomial (28) satisfying:

Γε(f(x))− ε ≤ f(x) ≤ Γε(f(x)) + ε, ∀x ∈ X (35)

in other words, we want to approximate the function f(x) by a monomial Γε(f(x)) with
a given accuracy ε. In the least-squares sense, this problem is solution of a nonlinear

11The notation � means a componentwise inequality.

27

constrained 2-norm minimization problem:

minimize ‖f(x)− Γε(f(x))‖2
2

subject to |Γε(f(x))− f(x)| ≤ ε

x = (x1, · · · , xn) ∈ X

(36)

However, for small values of ε this problem may be infeasible. To make the problem
feasible for every value of ε it is necessary to relax the constraints. This can be done
by introducing additional variables ε−, ε+ that indicate that, occasionally, we accept the
constraints violation as long as it does not exceed a certain value which must be as small
as possible. This can be formulated as follows:

minimize ‖f(x)− Γε(f(x))‖2
2 + ε− + ε+

subject to Γε(f(x))− f(x) ≤ ε+ ε−

−Γε(f(x)) + f(x) ≤ ε+ ε+

ε− ≥ 0, ε+ ≥ 0, x = (x1, · · · , xn) ∈ X

(37)

A good approximate solution to this problem can be found by using data points drawn
within X according to a uniform probability distribution. In these conditions, problem
(37) is formulated as follows12:

minimize ‖Lp− q‖2
2 + ‖ε−‖2

2 + ‖ε+‖2
2

subject to Lp− q � 1ε+ ε−

−Lp+ q � 1ε+ ε+

ε− � 0, ε+ � 0

(38)

where L, p and q are defined as in (32), 1 = (1, 1, · · · , 1), ε−, ε+ are vectors, and �, �
represents componentwise inequalities. This is a convex optimization problem which can
be solved using available solver like for instance cvx.

12Note that this formulation is closely related to the so called SVM-regression, see for instance [14].

28

References

[1] S. Boyd, S.-J. Kim, L. Vandenberghe & A. Hassibi. A Tutorial on Geometric Programming.
Optimization and Engineering, vol. 8(1), pp. 67-127, 2007.

[2] C.A.C Coello & E.M. Montes. Constraint-handling in genetic algorithms through the use of
dominance-based tournament selection. Advanced Engineering Informatics, Vol. 16, pp. 193-
203, 2002.

[3] L. C. Cagnina, S. C. Esquivel & C. A. Coello Coello. Solving Engineering Optimization
Problems with the Simple Constrained Particle Swarm Optimizer. Informatica, Vol. 32, pp.
319-326, 2008.

[4] M. Grant & S. Boyd. CVX: Matlab Software for Disciplined Convex Programming, version
1.21. http://cvxr.com/cvx, 2010.

[5] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Kluwer
Academic Publishers, Boston, MA, 1989.

[6] Q. He & L. Wang. An effective co-evolutionary particle swarm optimization for constrained
engineering design problems. Engineering Applications of Artificial Intelligence, Vol. 20, pp.
89-99, 2007.

[7] M. Hershenson, S. Mohan, S. Boyd, & T. Lee. Optimization of Inductor Circuits via Geometric
Programming. Proceedings of IEEE Design Automation Conference, pp. 994-998, 1999.

[8] C. T. Kelley. Iterative Methods for Optimization. SIAM Frontiers in Applied Mathematics,
N◦ 18, 1999.

[9] J. Kennedy, & R. C. Eberhart. Particle swarm optimization. In Proceedings of IEEE Inter-
national Conference on Neural Networks pp. 1942-1948, Piscataway, NJ, USA, IEEE Press,
1995.

[10] S. Kirkpatrick, C. D. Gelatt & M. P. Vecchi. Optimization by Simulated Annealing. Science,
Vol. 220(4598), pp. 671-680, 1983.

[11] S. J. Qu, K. C. Zhang & Y. Ji. A new global optimization algorithm for signomial geometric
programming via Lagrangian relaxation. Applied Mathematics and Computation, Vol. 184, pp.
886-894, 2007.

[12] S. S. Rao. Engineering Optimization. Wiley, New York, 1996.

[13] K. Sedlaczek & P. Eberhard. Using augmented Lagrangian particle swarm optimization for
constrained problems in engineering. Structural and Multidisciplinary Optimization, Vol. 32,
pp. 277-286, 2006.

[14] A. J. Smola & B. Schölkopf. A tutorial on support vector regression. Statistics and Comput-
ing, Vol. 14, pp. 199-222, 2004.

[15] R. Toscano & P. Lyonnet. Heuristic Kalman Algorithm for solving optimization problems.
IEEE Transaction on Systems, Man, and Cybernetics, Part B, Vol. 35, pp. 1231-1244, 2009.

29

[16] R. Toscano. H2/H∞ Robust static output feedback control design without solving linear
matrix inequalities. ASME Journal of Dynamic Systems, Measurement and Control, Vol. 129,
pp. 860-866, 2007.

[17] Y. Wang & Z. Liang. A deterministic global optimization algorithm for generalized geometric
programming. Appl. Math. Comput., Vol. 168, pp. 722-737, 2005.

30

