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Abstract. This paper presents a simple but effective method for designing robust
PI or PID controller. The robust PI/PID controller design problem is solved by the
maximization, on a finite interval, of the shortest distance from the Nyquist curve of
the open loop transfer function to the critical point -1. Simulation studies are used to
demonstrate the effectiveness of the proposed method.
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1 Introduction

The proportional-integral (PI) and proportional-integral-derivative (PID)
controllers are widely used in many industrial control systems for several de-
cades since Ziegler and Nichols proposed their first PID tuning method. This is
because the PID controller structure is simple and its principle is easier to un-
derstand than most other advanced controllers. On the other hand, the general
performance of PID controller is satisfactory in many applications. For these
reasons , the majority of the controllers used in industry are of PI/PID type.

Most of real plant operate in a wide range of operating conditions, the ro-
bustness is then an important feature of the closed loop system. When this is
the case, the controller has to be able to stabilize the system for all operating
conditions. To this end, it is possible to employ an internal-model-based PID
tuning method (Morari and Zafirou, 1989; Chien and Fruehauf, 1990). Howe-
ver, this method gives very slow response to load disturbance for lag-dominant
processes because of the pole-zero cancellations inherent in the design metho-
dology (Astrom and Haggliind, 1995). Another popular approach with similar
emphasis is the tuning of PI or PID controller by the gain and phase margin
specifications (Ho & al., 1995; Astrom and Hagglund, 1988). Gain margin and
phase margin have always served as important measures of robustness. It is well
known that phase margin is related to the damping of the system, and can the-
refore also serve as a performance measure (Franklin and al., 1986). In this way,
numerous progress has been made to improve the performances of the PI/PID
control (Hang & al., 2002). In particular, tuning methods based on optimization
approach have recently received more attention in the literature, with the aim of
ensuring good stability robustness of the controlled system (Hwang and Hsiao,
2002; Ge & al., 2002). However these new methods are not easy to use for the
operating engineer who is the main user of the PI/PID controller.
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The objective of this paper is to propose a novel robust PI or PID controller
which is simple and easy to use.

The paper is organized as follows. Section 2 presents the process models used
for the synthesis of the PI or PID controller. In section 3, the robust PI/PID
controller design problem is formulated and solved by the maximization, on a
finite interval, of the shortest distance from the Nyquist curve of the open loop
transfer function to the critical point -1. Simulation studies are conducted in
section 4 and comparison with the works of other authors are given. Section 5
concludes this paper.

2 Process models

The industrial processes are of an extreme variety. Nevertheless, a very broad
class is characterized by aperiodic response. This important category of indus-
trial systems can be represented by a first order plus dead time model, as follows:
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Note that the above process model is only used for the purpose of simplified

analysis. The actual process may have multiple lags, non-minimum phase zero,

etc. Another important class of industrial processes is characterized by non

aperiodic response. This category of processes can be represented by a second-
order plus dead-time model, as follows:
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Many identification techniques can be used to obtain first-order plus dead-
time or second-order plus dead-time model for PI/PID control (Despand and
Ash, 1988; Astrom & al., 1993). A simple method is based on the analysis of the
open-loop step response. The first-order plus dead-time model (1) is obtained

as follows :
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where y is the final value of the step response of the process, ¢; (respectively
t2) is the time where the output attains 28% (respectively 40%) of its final value.
For the second-order plus dead-time model (2), the parameters are obtained as
follows :
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where D, is the first overshoot for the unit step response of the process and
tp is the corresponding time. Alternatively, these models can be derived from
relay feedback method (Astrom and Hagglund, 1995, 1988). This method can
be extended to open-loop unstable processes (Scali & al., 1999; Marchetti & al.,
2001).

3 Robust PI/PID controller design

In this section, the robust PI/PID controller design problem is formulated
and solved via numerical optimization method.

3.1 Problem statement

Consider the PID feedback control system shown in 1, in which G(s) re-
presents the transfer function of the process model (1) or (2) and K (s) is the
transfer function of the standard PI/PID controller :
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Fi1G. 1 — Block diagram of the PID feedback control system

For this control system, the sensitivity function S(s) and complementary sen-
sitivity function T'(s) which is the transfer function of the closed loop system,
are respectively, defined by :
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) =TT RmEE ~ 170 (6)
where L(s) = K(s)G(s) is the open-loop transfer function, and:
T(s)=1-S(s) = #Z)(S) (7)

The quantity |T'(jw)| represents the input-output gain at the frequency 27 /w,
for a PI/PID controller this gain is equal to one in the low frequency domain,
that is the steady state error is equal to zero. The quantity M, = max,, |T(jw)|
is the peak magnitude of the frequency response of the closed-loop system. It



is well known that M, is related to the overshoot for the step response of the
closed-loop system. In order to impose good transient response it is necessary
to have:

M, < M} (8)

where M; > 1 is the upper bound of the maximum of the complementary sen-
sitivity function. In an equivalent manner the following constraint is required :

Dy < Df (9)

where D, is the first overshoot of the step response and Df is the upper bound
value of this overshoot. It is then possible to introduce a lower bound pseudo
damping factor (,,, which is related to the upper bound of the first overshoot
by the relation :
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the relation between M;‘ and the lower bound pseudo damping factor (,,, is
given by (Di Stefano & al., 1975):
1
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For a good transient response it is then required that:

¢2Gm (12)

where ( is the pseudo damping factor of the closed-loop system. The quantity
1/|S(jw)| represents the distance between the Nyquist curve of the open-loop
transfer function L(s) and the critical point -1 at the frequency 27/w. The
minimum of this distance represents then a good measure of the stability margin.

Consider an additive error model of the open loop transfer function AL(s),
the influence of this error on the closed-loop transfer function can be deduced
from the first order Taylor series expansion :

T(L(s) + AL(s)) = T(L(s)) + gigg AL(s) (13)
which gives the well known result :
AT(s) s AL(s)

The quantity max,, |S(jw)| represents then a good evaluation of the robustness
in the face of model uncertainties. The sensitivity function S(s) appears also in
the transfer function of the input disturbance D(s) to the output Y (s):

Y(s) = G(s)S(s)D(s) (15)



The quantity max,, |S(jw)| represents then also a good evaluation of the per-
formance rejection of the load disturbance. Finally, in order to achieve good
transient response, good stability margin, good robustness in the face of mo-
del uncertainties and good rejection of the load disturbance, it is necessary to
determine the parameters k,, k; and kg such that:
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There is not a known analytical solution of this optimization problem. A way
to solve this problem is the numerical optimization. In the following, specific
numerical optimization methods are proposed for the PI/PID controller for the
plant models (1), (2).

3.1.1 Numerical optimization of the PI controller with the first-
order plus dead-time process model

Consider the standard PI controller (4.1) and the process model (1), the
open-loop transfer function is given by :
k(1 + k,T;s)e tos
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with T; = 1/k;. Using the approximation e % ~ 1/(1 + tos), the polynomial
characteristic of the closed-loop system is given by :
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which is of the form:
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The closed-loop stability impose a > 0 which is verified if:
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with b > 2. Taking into account the first constraint of (16) one can choose
¢ = (m which gives:
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The optimization problem is then written as follows:
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which is numerically easy to solve. The PI controller is sufficient when the
process dynamics is essentially first order. For higher-order processes the PI
controller is not performing well, in this case the PID controller will be used
(Ho & al. 1995).

3.1.2 Numerical optimization of the PID controller with the first-
order plus dead-time process model

The dynamic performance obtained with the PI controller can be improved
by the use of a PID controller. Consider the standard PID controller (4.1) and
the process model (2), the open-loop transfer function is then given by :

L(s) = k(1 + kpTis + kqT;s?)etos
B T;s(1+ Ts)

with T; = 1/k;. Using now the approximation e~ % ~ 1/(1 + %0.9)2, the polyno-
mial characteristic of the closed-loop system is given by :
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in order to obtain an entirely adjustable polynomial characteristic, p(s) can be
put in the form:

p(s) = (s +a)*(s* + 2Cwos + wp)



with :
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with b > 1. Taking into account the first constraint of (16) one can choose
¢ = (m which gives:
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The optimization problem is then written as follows:
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3.1.3 Numerical optimization of the PID controller with the second-
order plus dead-time process model

The methods presented above can be extended for the second-order plus
dead-time process model, the open-loop transfer function is then given by :
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with T; = 1/k;. Using the approximation e % ~ 1/(1 + tos), the polynomial
characteristic of the closed-loop system is now given by :
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with b > 10. Taking into account the first constraint of (16) one can choose
¢ = (mn which gives
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The optimization problem is then written as follows:



ey {min 1+ LG
k(]. + kaiS + deiS2)€7tos
L(s) = —
T;s(s? + a1s + ap)

1 /1 1
wo =7 (50 + 5

Cm 2 2to
1 1
a=-a;+— — (pwo (28)
2 2to
2(alm + wo)awoto — ag
ky, =
ki = a’wit,
(a!€+ 4almwo + Wi — ap)to — ay
\ kd = k

4 Results

In this section various examples are presented to illustrate the proposed
robust PI/PID controller design method.

4.1 Example 1

Consider the first-order plus dead-time model : :Jr;l The proposed tuning

method gives the following PI/PID controllers parameters ((, = 0.7):

PI:  k,=0646 k; =0.5712
PID: k,=0846 k; =0.7007 kq = 0.2501

For comparison, simulation results are presented for the PI controller tuned by
the Gain and Phase Margin (GPM) method (Ho & al., 1995). The GPM-PI
controller parameters are: k, = 0.52, k; = 0.52 (4,, = 3, ®,, = 60).

5 10 s 0 5 10 1

Fi1G. 2 — Unit step response and load-distrbance response. GPM-PI controller
(-.-), proposed PI controller (-) and proposed PID controler (...).



Comparison results are shown in figure 2 for unit step response and load-
disturbance response respectively. It is observed that the performance of the
proposed PI/PID controller is better than that of GPM-PID controller.

For comparison with IMC-PI controller, consider the lag dominant first-order
plus dead-time model e;i; The proposed tuning method gives the following
PI controllers parameters ((, = 0.5): k, = 0.86, k; = 2.66. The corresponding
parameters of the IMC-PI controller are (Astrom & Haggliind, 1995): k, = 0.5,
ki = 2.

1.4 0.6
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F1G. 3 — Unit step response and load-distrbance response. IMC-PI controller
(--- ), proposed PI controller (-).

Examples of responses to step change in set point and load-disturbance are
shown in figure 3. The performance of the proposed PI controller is superior to
that of IMC-PI controller.

1—s

Consider now, the non-minimum phase zero process model : GIE The mo-

del used for the designing PID controller is : % The proposed method gives
the following PID controllers parameters : k, = 0.7983, k; = 0.3514, ks = 0.4497
(Cmin = 0.75). With the Gain and Phase Margin method the parameters are
k, = 0.66, k; = 0.33, kg = 0.33 (A, = 3, &, = 60).

Fi1G. 4 — Unit step response and load-distrbance response. GPM-PID controller
(-.-), proposed PID controller (-).
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Comparison results are shown in figure 4 for unit step response and load-
disturbance response repectively. Globally, the performance of the proposed PID
controller is superior to that of GPM-PID controller.

4.2 Example 2

Consider the model of a stirred tank reactor:

CA = %(CAf —CA) —kOCAef%

T= £(T;-T)—2kc e wr (29)
cCpc __ha
"'chvqt’(l — ¢ 7PeCpeae (ch -T)

whose variables, parameters and nominal values are the same as defined in
(Ge & al., 2002) and reproduced below.

Parameter Notation  Value

Process flow rate q 100 1/min

Feed concentration Cay 1 mol/1

Feed temperature Ty 350 K

Coolant inlet temperature  Tcy 350 K

Reactor volume v 100 1

Heat transfer coefficient ha 7 x 10% cal/min/K
Reaction rate constant ko 7.2 x 1019 min—!
Activation energy term E/R 1x 104K

Heat of reaction AH —2 x 10% cal/mol
Liquid densities Py P 1x 103 g/l
Specific heat Cp, Cpe 1 cal/g/K

In this example, C'4 is the measured output, ¢. is the control variable and
Cay is the disturbance. Consider the stable region C'4 € [0.06 0.14], the pro-
posed synthesis method was applied in the worst-case of this domain, that is for
C4 = 0.14 which gives undamped modes. The PID controller parameters are
obtained as k, = 698.1, k; = 1126,6, k; = 367.1. For comparison, simulation
results are presented for the PID controller given by (Ge & al., 2002), which
use a LMI approach for the synthesis. The LMI-PID controller parameters are
k, = 516.6, k; = 765.5, kg = 143.8.

Comparison results are shown in figure 5 for successive step change in the
effluent concentration C'4 that varies between 0.06 and 0.3. It is observed that in
the whole operating regimes (C4 € [0.06 0.14]), the performances of both PID
controllers are similar. However for successive step in C4 between 0.15 and 0.3
(in this domain the process is unstable), the LMI PID control system becomes
unstable while the proposed PID control system still remains stable. Figure 6
presents the disturbance response for three operating points. It is observed that
the performance of the proposed PID controller is better than that of LMI-PID
controller.
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Fia. 5 — Closed-loop responses to sucessive step changes in set point. LMI-PID
controller (-.-), proposed PID controller (-).
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F1a. 6 — Closed-loop responses to disturbance. LMI-PID controller (-.-), proposed
PID controller (-).
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Conclusion

In this paper, a simple robust PI/PID controller design method was de-

veloped via numerical optimization approach. Various simulation studies have
demonstrated the effectiveness of the proposed approach.
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