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Abstract. This paper presents an e�ective method for robustness analysis and synthesis
of a multi-PID controller for nonlinear systems where desirable robustness and performance
properties must be maintained across a large range of operating conditions. The robustness
analysis problem is solved using an uncertain multimodel of the original nonlinear system.
The model of uncertainties used is an interval matrix modeled by a stochastic matrix which
gives poor conservatism in the analysis of stability robustness. Moreover, the robust stability
margin is interpreted as a smallest interval matrix that causes instability. This stability margin
is evaluated using a random search algorithm. Simulation studies are used to demonstrate the
e�ectiveness of the proposed method.
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1 Introduction

The proportional-integral-derivative (PID) controller is the industrial stan-
dard for the control process. The popularity of the PID controller can be at-
tributed partly to their performance which is satisfactory in many applications
and partly to their functional simplicity, which allows engineers to operate them
in a simple and straightforward manner. For these reasons, the majority of the
controllers used in industry are of PI or PID type.

Most of real plant operate in a wide range of operating conditions, the ro-
bustness is then an important feature of the closed loop system. When this is
the case, the controller has to be able to stabilize the system for all operating
conditions. In this way, numerous progress has been made to improve the per-
formances of the PI/PID control [3]. In particular, tuning methods based on
optimization approach have recently received more attention in the literature,
with the aim of ensuring good stability robustness of the controlled system [5, 2].
However these new methods are not very e�ective in the case of a strongly non-
linear system evolving on a large range of operating condition. Indeed, it is well
known that a controller designed around a speci�c operating point may not be
able to accomodate large variations in process dynamics. This is due mainly by
the presence of system non linearities, which cause di�erent dynamic behaviors
from an operating point to another. This kind of problems can be solved by
linearizing the system equations around several operating points and designing
a linear controller for each region of operation. The resulting controllers are
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then combined by interpolation in order to obtain an appropriate controller for
the original nonlinear system, this is the well known gain scheduling approach
[6, 8]. This procedure is time consuming and expensive, but is well accepted
and gives satisfactory results in many applications. Another similar approach
facilitates the controllers interpolation through the use of validity or member-
ship functions. By this method local controllers are selected as a function of
the current state of the process [4, 1, 13]. These approaches leads naturally to
the approximation of a nonlinear system by a family of linear systems correctly
combined between them. This concept is not new and was �rst developed in an
elegant manner by Takagi and Sugeno within the framework of the fuzzy set
theory [10]. Takagi-Sugeno fuzzy models are non linear systems described by a
set of if-then rules which gives local linear representation of an underlying sys-
tem. Practically, such multi-linear modeling (multimodel) technique can be used
to extend the well known linear controller design tools to complexe nonlinear
systems [11, 7].

The main objective of this paper is to provide a simple and practical method
for the evaluation of the stability robustness of a given PID controller in the
context of parametric uncertainties. Contrary to existing solutions, the proposed
method does not require the resolution of LMIs or BMIs [9, 15]. This is more
interesting from a practical point of view, because in the context of robust
control design, the LMI solution generally requires to simultaneously solve a
number of convex inequalities which is exponential according to the number
of parameters. Thus the LMI approach is computationally critical for a large
number of uncertain parameters. The same is true for BMIs but in addition no
e�cient algorithm exists to solve BMIs.

In this work we propose to solve the robustness analysis problem by using a
random search approach. To this end, a multimodel representation is used which
is able to represent a given nonlinear process. The proposed multimodel takes
into account parametric uncertainties, which result of the process linarisation
or identi�cation around a family of operating point, by the use of a stochastic
matrix. On the basis of this uncertain multimodel, a random search algorithm is
proposed to �nd an estimate of the largest parametric uncertainties before insta-
bility. Using this algorithm, a practical design method of a multi-PID controller
is proposed which allows us to evaluate the robustness of the closed-loop system.

The paper is organized as follows. Section 2 presents the construction of the
uncertain multimodel in order to obtain on the operating range a correct repre-
sentation of the behavior of the original nonlinear system. Section 3 is devoted
to the design of single PID controller that is able to stabilize the uncertain
multimodel. Su�cient conditions for the robust asymptotic stability are given,
which can be used to determine, for a given PID controller, the largest para-
metric uncertainties before instability (or equivalently the smallest parametric
uncertainty that causes instability). In section 4 the single PID controller is
generalized to a multi-PID controller and a design methodology is presented.
Simulation studies are conducted in section 5, �nally section 6 concludes this
paper.
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2 The multimodel used for the synthesis

Consider the class of nonlinear single-input single-output (SISO) plants ex-
pressed in the following form: �

_z = f(z;u)
y = h(z)

(1)

where z 2 Rnz denote the state vector, u 2 R is the control input, y 2 R is the
measured output, and f and h are smooth functions onRnz andR, respectively.
The design of an output feedback controller that stabilise the nonlinear system
(1) remains relatively di�cult. However, it is well known that this system can
be correctly represented by an appropriate combination of linear local models.

Let D the desired operating domain of the underlying system. This domain
can be divided into l local domains Di where the system (1) can be represented
by a local linear model.

Assumption 2.1. On each local domain Di, the system (1) can be described
by the following local linear state space representation:�

_x(t) = Aix(t) +Biu(t)
y(t) = Cx(t)

(2)

where x 2 Rn denote the state vector, u 2 R is the control input, y 2 R is
the measured output, Ai, Bi and C are constants matrices with appropriates
dimensions. Note that it is always possible to put a given local model (strictly
proper) in the form (2).

This local model can be obtained by an appropriate identi�cation of the system
around an operating point yi0 2 Di, possibly by a local �rst-order plus dead
time model or a second-order plus dead time model (see remark 2.1). In the
case where de nonlinear process model (1) is known, this local representation
can be obtained by linearisation via �rst order Taylor series expansion of the
nonlinear functions f and h.

Remark 2.1. It is well known that a very large class of industrial process
can be represented, around a given operating point, by a �rst-order plus dead
time model G(s) = ke�t0s=(1 + �s), or a second-order plus dead time model
G(s) = k!20e

�t0s=(s2 + 2�!0s + !20). Using the approximation e�t0s � 1=(1 +
t0
�
s)� , where the constant � is choozing in order to obtain a good accuracy

of the time delay, the transfer function of the process model is then given by
G(s) = k=(sn + � � �+ a1s+ a0), with n = � + 1 (�rst order case), or n = � + 2
(second order case). It can be veri�ed that (2) is a state space realisation of this
transfer function.

However, the local model (2) is valid only around the operating point yi0 2 Di,
and is called the nominal local linear model of the domain Di. For y 6= yi0
and y 2 Di, the corresponding dynamic behavior of the process can be very
di�erent of that of the nominal local linear model. In fact, the system matrices
(Ai;Bi) varies on the domain Di. These variations can be seen as a parameters
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uncertainties. In order to take into account these uncertainties, it is necessary
to consider an uncertain linear local model.

Assumption 2.2. On the domain Di, the system matrices (Ai;Bi) veri�es the
following inequalities : �

Ai 6e Ai 6e
�Ai

Bi 6e Bi 6e
�Bi

(3)

where the matrices Ai, �Ai, Bi and �Bi are known bounds of the nominal matrices
Ai and Bi respectively.

Using this assumption, the matrices Ai and Bi can be rewritten as follows:

�
Ai = A0

i +�A(t)~A1
i

Bi = B0
i +�B(t)~B1

i

with:

8<
:

j�A(k;q)(t)j 6 1; j�B(k;q)(t)j 6 1
A0
i =

1
2 (Ai + �Ai); A

1
i =

1
2 (

�Ai � Ai)
B0
i = 1

2 (Bi + �Bi); B
1
i = 1

2 (
�Bi �Bi)

(4)

Remark 2.2. With this new formulation of uncertainties, the matrices Ai and
Bi are not quelconque, for instance, each element of Ai is such that Ai(k;q) 2
[Ai(k;q); �Ai(k;q)]. This representation is then more realistic compared to boun-
ded uncertainties which lead to very conservative results. Indeed, bounded un-
certainties include matrices which never appear in the evolution of the real
system on the domain Di.

The uncertain linear local model on the domainDi, is then written as follows:�
_x(t) = (A0

i +�A(t)~A1
i )x(t) + (B0

i + �B(t)~B1
i )u(t)

y(t) = Cx(t); y 2 Di
i = 1; : : : ;l (5)

We have thus a family of l local models allowing to represent validly the
behavior of the system on each local areas. If y 2 Di then the local model
number i describe correctly the system. This idea can be formalized in the
following manner, let �i(y) > 0 a function allowing to indicate the validity of
the local model number i on the domain Di:

�i(y) : D = [iDi ! [0; 1] (6)

such that �i(y) � 1 for y 2 Di and decreasing rapidly to zero beyond Di. The
non linear process model (1) can then be approximated by interpolation of the
linear uncertain local models (5):8>>>>>>>>><
>>>>>>>>>:

_x(t) =
lX

i=1

wi(y)
��
A0
i +�A(t)~A1

i

�
x(t) +

�
B0
i + �B(t)~B1

i

�
u(t)

�

y(t) = Cx(t); y 2 D = [iDi

wi(y) =
�i(y)Pl
i=1 �i(y)

(7)
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where wi(y) is the interpolation function which connect smoothly the local mo-
dels together in order to form, on the domain D, a global model of the non
linear system (1).

Example 2.1. Consider the model of a stirred tank reactor :

_CA = q
V
(CAf � CA)� k0CAe

�
E
RT

_T = q
V
(Tf � T )� �Hk0

�Cp
CAe

�
E
RT

+
�cCpc
�CpV

qc(1� e
�

hA
�cCpcqc )(Tcf � T )

(8)

whose variables, parameters and nominal values are the same as de�ned in
[2] and reproduced below.

Parameter Notation Value
Process �ow rate q 100 l/min
Feed concentration CAf 1 mol/l
Feed temperature Tf 350 K
Coolant inlet temperature Tcf 350 K
Reactor volume V 100 l
Heat transfer coe�cient hA 7� 105 cal/min/K
Reaction rate constant k0 7:2� 1010 min�1

Activation energy term E=R 1� 104 K
Heat of reaction �H �2� 105 cal/mol
Liquid densities �, �c 1� 103 g/l
Speci�c heat Cp; Cpc 1 cal/g/K

In this example, CA is the measured output, qc is the control variable and CAf

is the disturbance. Consider the operating range de�ned as D = f(CA; T; qc) :
CA 2 [0:06; 0:13]g, for the operating points C1

A = 0:06, C2
A = 0:1 and C3

A = 0:13,
the corresponding nominal local linear models are

A1 =

�
�16:67 �0:047
3133:33 7:42

�
; A2 =

�
�10 �0:047
1800 7:33

�
; A3 =

�
�7:69 �0:046
1338:46 7:19

�

BT
1 = [0 � 0:99]; BT

2 = [0 � 0:88]; BT
3 = [0 � 0:82]

T 1 = 449:47; q1c = 89:03; T 2 = 438:54; q2c = 103:41; T 3 = 432:92; q3c = 110:03

For gaussian validity functions, the nominal multimodel is given by:

8>>><
>>>:

�
_CA(t)
_T (t)

�
=

3X
i=1

wi(CA)

�
Ai

�
CA(t)� Ci

A

T (t)� T i

�
+Bi(qc(t)� qic)

�

wi(CA) =
�i(CA)P
3

j=1 �j(CA)
; �i = exp

�
� 1
2

�
CA�C

i
A

�i

�2�

where the parameters �i are chosen in order to cover the totality of the
operating range (in this example �i = 0:01; i = 1;3). Comparison results are
shown in �gure 1 for successive step changes in the �ow rate that varie between
qc = 89:03l=min and qc = 110:03l=min.
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Fig. 1 � Open-loop responses to successive step changes in the �ow rate.

One can see that in the whole operating range (CA 2 [0:06 0:13]), the
multimodel is a good approximation of the nonlinear system but, of course, not
represent exactly the real system. If in this nominal model is incorporated the
proposed model of uncertainties, one de�nes in fact a set of model which include
the evolution of real system. Thus the stabilisation of the uncertain multimodel
implies the stabilization of the real system. This aspect is studied in the next
section.

3 Robust stabilization of the uncertain multimo-

del

Consider a nth-order multimodel with parametric uncertainties, which is
described by the following state space equation:8>>><
>>>:

_x(t) =

lX
i=1

wi(y)
��
A0
i +�A(t)~A1

i

�
x(t) +

�
B0
i + �B(t)~B1

i

�
u(t)

�
y(t) = Cx(t); wi(y) =

�i(y)Pl
i=1 �i(y)

(9)

The objective is to design a PID controller for robust stabilisation of (9), the
control law is in the following standard form:8<

:
_�1(t) = � 1

�d
�1(t) +

1
�d
"(t)

u(t) = ki

Z t

0

"(�)d� +
kd
�d

("(t)� �1(t)) + kp"(t)
(10)

where " = r � y is the error, r the reference input and y the measured output.
Note that this representation in the time domain, corresponds to the following

transfert function u(s)
"(s) = kp + ki

s
+ kds

1+�ds
, which is proper, this PID is then

6



physically realisable. Let _�2(t) = r(t)�y(t), the control input is then written as
follows: 8<

:
_�1(t) = � 1

�d
�1(t) +

1
�d
"(t)

_�2(t) = r(t) � Cz(t)
u(t) = Kxa(t) +Krr(t)

(11)

withK =
h
�
�
kd
�d

+ kp

�
C � kd

�d
ki

i
,Kr =

�
kd
�d

+ kp

�
, and xTa = [xT �1 �2].

The closed-loop system of (9) and (10) is then8>>><
>>>:

_xa(t) =

lX
i=1

wi(y)
nh

Ai
c +

~Ai
c +

�
Bi
c +

~Bi
c

�
K
i
xa(t) +Bi

rr(t)
o

y(t) = [C 01�2]xa(t)

(12)

with

Ai
c =

2
4 A0

i 0n�2�
� 1

�d
C

�C

� �
� 1

�d
0

0 0

� 3
5 ; ~Ai

c =

�
�A(t)~A1

i 0n�2

02�n 02�2

�

Bi
c =

�
B0
i

02�1

�
; ~Bi

c =

�
�B(t)~B1

i

02�1

�
; Bi

r =
�
Bi
c + ~Bi

c

�
Kr +

2
4 0n�1� 1

�d

1

� 3
5

(13)

The main result for the asymptotic stability of the closed-loop uncertain multi-
model (12), is summarized in the following theorem.

Theorem 3.1. If there exist a symmetric and positive de�nite matrix P , a

matrix K =
h
�
�
kd
�d

+ kp

�
C � kd

�d
ki

i
and a real number � such that:8>><

>>:
8�A(k;q)(t);�B(k;q)(t) 2 [��; �]; �max

�
Qi +�T

i P + P�i

�
< 0

Qi =
�
Ai
c +Bi

cK
�T

P + P
�
Ai
c +Bi

cK
�

�i =

�
�A(t)~A1

i 0n�2
02�n 02�2

�
+

�
�B(t)~B1

i

02�1

�
K

(14)

for i = 1; : : : ;l, then the origin of the closed-loop system (12) is an asymptotically
stable equilibrium point, for all parametric uncertainties satisfying:�

A0
i � �A1

i 6e Ai 6e A
0
i + �A1

i

B0
i � �B1

i 6e Bi 6e B
0
i + �B1

i

i = 1; : : : ;l (15)

Proof. For the simplicity of notation, de�ne ~Qi = Ai
c + Bi

cK + �i. Consider
the Lyapunov function candidate V (xa) = xTa Pxa, where P is a time invariant,
symmetric and positive de�nite matrix. By substituting (12) with r = 0, into
the time derivative of V (xa), _V (xa) = _xTa Pxa + xTa P _xa, we obtain

_V (xa) = xTa

nPl
i=1 wi(y) ~Qi

oT
Pxa + xTa P

nPl
i=1 wi(y) ~Qi

o
xa

= xTa

nPl
i=1 wi(y)

�
~QT
i P + P ~Qi

�o
xa

= xTa

nPl
i=1 wi(y)

�
Qi +�T

i P + P�i

�o
xa
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Let �max[:] the largest eigenvalue of the symmetric matrix [.], if

�max

�
Qi +�T

i P + P�i

�
< 0

for i = 1; : : : ;l and �A(k;q)(t);�B(k;q)(t) 2 [��; �], then _V (xa) < 0. The
uncertain closed-loop multimodel is then asymptotically stable on the domain
D = [jDj for all uncertainties satisfying (15).

Theorem 3.1 cannot be used to compute directly the matrix gainK, however
the following design procedure can be adopted for this task.

1. Compute the matrix gain K for the worst-case local model. For this, one
can use, for example, the method described in [14].

2. Veri�es that the following inequality maxiRe
�
�[(Ai

c +Bi
c)K]

	
< 0 is sa-

tis�ed.

3. Search the largest number � = �max such that

max
i; �

Re
n
�
h
Ai
c +

~Ai
c +

�
Bi
c +

~Bi
c

�
K
io

< 0 (16)

For � 6 �max, the PID controller stabilise the multimodel for all uncer-
tainties satisfying (15).

3.1 Robustness analysis

It is now necessary to give some developments concerning the step three of
the procedure given above. Note that the value �max can be seen as a robust
stability margin, that is the smallest symmetric uncertainty that causes instabi-
lity. Indeed, consider a su�ciently small � > 0 such that the closed-loop system
is stable. Next increase � until �max so that the closed-loop system becomes
unstable. Thus �max is the robust stability margin. The determination of this
stability margin is not an easy task because this problem is related to the sta-
bility of an interval matrix which is a NP-hard problem [16]. An interesting
approach to solve this kind of problem is to use a random search algorithm. For
this, consider, for given matrices P , K and a number � the following function:

	(�A(t);�B(t)) =

(
1 if max

i
Re

n
�
h
A
i
c + ~Ai

c +
�
B
i
c + ~Bi

c

�
K
io

< 0

0 otherwise
(17)

the main result to check the robust stability of the closed-loop uncertain multi-
model (12), is summarized in the following theorem.

Theorem 3.2. If the algorithm

1. Choose a number of iterations �, and a size of uncertainties �.

2. Generate the matrices �A and �B, with random uniformly distributed ele-
ments on the interval [��; �].

3. If 	(�A;�B) = 0 then stop.

4. If the number of iterations is incomplete go to step 2, otherwise stop.
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is stopped without to have 	(�A;�B) = 0 after a number of iterations � such
that � > ln(Æ)= ln(1 � �), then, with a con�dence 1 � Æ, the closed-loop system
can be declared stable for all system parameters satisfying (15), except possibly
for those belonging to a set of measure no larger than �.

Proof. For a given probability of instability � = Prf	 = 0g, which is considered
as an improbable and indesirable event, we want to determine the number of
iterations in order to detect the apparition of this indesirable event with a given
probability 1 � Æ. Consider a total number of � experiments (or iterations),
the probability so that we have one closed-loop system instable after successive
closed-loop systems stable is given by �+

P�
k=2 �(1��)k�1. We want to determine

the number of iterations in order to detect the apparition of an instable closed-
loop system with a probability at least 1� Æ. The problem is then to determine
� such that �+

P�
k=2 �(1� �)k�1 > 1� Æ, which gives:

� > ln(Æ)= ln(1� �) (18)

Finally, if the probability of instability is �known� to be �, then the algorithm
will detect at least an unstable instance within � > ln(Æ)= ln(1 � �), with a
probability larger than 1� Æ. Now assume that the algorithm runs up to all �
iterations without detecting instability. This means only that true probability is
less than or equal to �, but not necessarily that the system is stable in all cases.
Indeed, let �0 be the true but unknown probability of instability. For � iterations,
we have not detected unstable system, this imply that the true probability of
detection of an unstable system after successive stable systems, is such that:

�0 +

�X
k=2

�0(1� �0)k�1 6 �+

�X
k=2

�(1� �)k�1

which imply that �0 6 �. Note that, for a probability of instability �, we have:

1�
 
�+

�X
k=2

�(1� �)k�1

!
6 Æ

which means that the largest probability of non-detection of an unstable system
is Æ, consequently the smallest probability of detection of stable systems is 1�Æ.
Finally, if after � > ln(Æ)= ln(1� �), iterations, only stable plants are generated,
it can be asserted, with a con�dence 1 � Æ, that the system is stable for all
system parameters satisfying (15), except possibly for those belonging to a set
of measure no larger than �.

Based on this result, an estimate �̂max of �max, can be determined using
the following random search algorithm.

Algorithm 3.1.

1. For a given � 2 (0;1) and Æ 2 (0;1), choose a number of iterations �
such that � > ln(Æ)= ln(1 � �), a lower bound �I = �inf , an upper bound
�S = �sup such that �inf 6 �max 6 �sup, and a precision �.
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2. Compute � = �I+�S
2

3. Generate � i.i.d samples
�
�
(1)
A ;�

(1)
B

�
; � � � ;

�
�
(�)
A ;�

(�)
B

�
, with random uni-

formly distributed elements on the interval [��; �].
4. If

P�
i=1	

�
�
(i)
A ;�

(i)
B

�
< � then �S = � goto step 2, otherwise �I = �.

5. If �S � �I > 2��I goto step 2, otherwise stop.

Indeed, we always have �I 6 �max 6 �S . Moreover, after N iterations, �I �
�S = 2�N(�sup � �inf ). Thus, when the algorithm is stopped, (�I + �S)=2
is guaranteed to approximate �max within a relative accuracy of �, that is
j(�I + �S)=2� �maxj 6 ��max.

By this approach, the dynamic performance of the closed-loop system varie
on each local domain Di because we have only one controller. If we want to
obtain constant performance on the global domain D = [iDi, it is necessary to
adopt a multi-PID controller, this is the purpose of the following section.

4 The multi-PID controller approach

Constant performance on the global domain D = [iDi can be obtained using
the following multi-PID controller8>>>>>>>>><

>>>>>>>>>:

_�(t) = � 1
�d
�1(t) +

1
�d
"(t)

u(t) =

lX
i=1

vi(y)

�
ki1

Z t

0

"(�)d� +
ki2
�d

("(t)� �1(t)) + ki3"(t)

�

vi(y) =

�
1 if y(t) 2 Di

0 if y(t) 62 Di

(19)

where the domain Di is de�ned as follows

Di = fy : �i(y) > �j(y); j = 1; : : : ;l; j 6= ig ; i = 1; : : : ;l (20)

with �i(y) de�ned as in (6). In the relation (19), " = r � y is the error, r the
reference input and y the measured output. Let _�2(t) = r(t) � y(t), the control
input is then written as follows:8>>>>>>><

>>>>>>>:

_�1(t) = � 1
�d
�1(t) +

1
�d
"(t)

_�2(t) = r(t)� Cz(t)

u(t) =

lX
i=1

vi(y)
�
Kixa(t) +Ki

rr(t)
�

vi(y) =

�
1 if y(t) 2 Di

0 if y(t) 62 Di

(21)
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withKi =
h
�
�
ki
2

�d
+ ki3

�
C � ki

2

�d
ki1

i
,Ki

r =
�
ki
2

�d
+ ki3

�
, and xTa = [xT �1 �2].

The closed-loop system of (9) and (19) is then8>>><
>>>:

_xa(t) =

lX
i=1

lX
j=1

wi(y)vj(y)
nh

Ai
c + ~Ai

c +
�
Bi
c + ~Bi

c

�
Kj
i
xa(t) +Bij

r r(t)
o

y(t) = [C 01�2]xa(t)
(22)

where Ai
c, ~Ai

c, B
i
c and ~Bi

c are de�ned in (13), Bij
r is the same as Bi

r but Kr

becomes Kj
r (see relation (13)). The main result for the asymptotic stability

of the closed-loop uncertain multimodel (22), is summarized in the following
theorem.

Theorem 4.1. If there exist a set of symmetric and positive de�nite matrices

Pj , a set of matrices Kj =
h
�
�
k
j
2

�d
+ kj3

�
C � k

j
2

�d
kj1

i
and a set of numbers

�j , (with j = 1; : : : ;l) such that:

8>><
>>:

8�A(k;q)(t);�B(k;q)(t) 2 [��j ; �j ]; �max

�
Qj +�T

j Pj + Pj�j

�
< 0

Qj =
�
Aj
c +Bj

cK
j
�T

Pj + Pj
�
Aj
c +Bj

cK
j
�

�j =

�
�A(t)~ A1

j 0n�2
02�n 02�2

�
+

�
�B(t)~B1

j

02�1

�
Kj

(23)

for j = 1; : : : ;l, then the origin of the closed-loop system (22) is an asymptoti-
cally stable equilibrium point, for all parametric uncertainties satisfying:�

A0
j � �jA1

j 6e Aj 6e A
0
j + �jA1

j

B0
j � �jB1

j 6e Bj 6e B
0
j + �jB1

j

j = 1; : : : ;l (24)

Proof. Suppose that the system evolve on the domain Dj , on this domain only
two local models are active, the models of indice j�1 and j or j and j+1, thus
on the local domain Dj the closed-loop multimodel can be written as follows

_xa(t) =

j+1X
i=j�1

wi(y)
nh

Ai
c + ~Ai

c +
�
Bi
c + ~Bi

c

�
Kj
i
xa(t) +Bij

r r(t)
o

(25)

note that the interval matrix generated with this expression is larger than the
real interval matrix, and thus gives more conservative results for the stability
studies. Let us recall that, in reality, when the system evolve on the domain Dj ,
the system matrices (Aj ;Bj) is such that Aj 6e Aj 6e

�Aj and Bj 6e Bj 6e
�Bj ,

thus the state matrix of the closed-loop system is such that Aj + BjK
j 6e

Aj + BjK
j 6e

�Aj + �BjK
j . For a weak conservatism, it is then convenient to

study the stability on the domain Dj for the system de�ned as follows

_xa(t) =
h
Aj
c + ~Aj

c +
�
Bj
c + ~Bj

c

�
Kj
i
xa(t) +Bjj

r r(t) (26)
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Consider the Lyapunov function candidate Vj(xa) = xTa Pjxa, where Pj is a
time invariant, symmetric and positive de�nite matrix. By substituting (26)
with r = 0, into the time derivative of Vj(xa), _Vj(xa) = _xTa Pjxa + xTa Pj _xa, we
obtain

_Vj(xa) = xTa
�
Qj +�T

j Pj + Pj�j

�
xa

Let �max[:] the largest eigenvalue of the symetric matrix [.], if the following
condition is satis�ed

8�A(k;q)(t);�B(k;q)(t) 2 [��j ; �j ]; �max

�
Qj +�T

j Pj + Pj�j

�
< 0

for j = 1; : : : ;l then _Vj(x) < 0 (j = 1 : : : ;l). The uncertain closed-loop multimo-
del is then asymptotically stable on the domain D = [jDj for all uncertainties
satisfying (24).

Theorem 4.1 cannot be used to compute directly the set of feedback gains
(K1; : : : ;Kl), however the following design procedure can be adopted.

1. For each local domain Dj , compute the matrix gain Kj for the nominal
local model (see remark 4.1).

2. Using Algorithm 3.1, �nd for each local domain Dj , the largest number
�j = �jmax such that

max
�j

Re
n
�
h
Aj
c +

~Aj
c +

�
Bj
c +

~Bj
c

�
Kj
io

< 0 (27)

Then, for all �j 6 �jmax, the multi-PID controller stabilise the uncertain
multimodel for all uncertainties satisfying (24).

Remark 4.1. For low order local nominal models (n 6 2), the design of the
PID controller can be easily done by a classical poles placement. For high order
nominal models (n > 3), the step 1 of the design procedure can be realised by
using, for instance, the method presented in appendix.

5 Simulation results

Consider the model of a stirred tank reactor given in the example 2.1. For
the operating range D = f(CA; T; qc) : CA 2 [0:06; 0:13]g, we have, for example,
the following local domains D1 = f(CA; T; qc) : CA 2 [0:06; 0:080]g, D2 =
f(CA; T; qc) : CA 2 [0:08; 0:115]g, D3 = f(CA; T; qc) : CA 2 [0:115; 0:13]g. On
the domain Di, the matrices Ai and Bi (i = 1; : : : ;3) can be written in the form
Ai = A0

i +�A(t)~A1
i and Bi = B0

i + �B(t)~B1
i , with:

A0
1 =

�
�14:6 �0:047
2716:7 7:4

�
B0
1 =

�
0

�0:96

�
A1
1 =

�
2:1 0
416:7 0:015

�
B1
1 =

�
0

0:032

�

A0
2 =

�
�10:6 �0:047
1919:6 7:3

�
B0
2 =

�
0

�0:89

�
A1
2 =

�
1:9 0
380:4 0:065

�
B1
2 =

�
0

0:041

�

A0
3 =

�
�8:2 �0:047
1438:8 7:2

�
B0
3 =

�
0

�0:83

�
A1
3 =

�
0:5 0
100:3 0:035

�
B1
3 =

�
0

0:005

�

8t;k;q; �A(k;q)(t) 2 [�1; 1] and �B(k;q)(t) 2 [�1; 1]
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The controller parameters are determined by a classical poles placement in
order to obtain a second order dominant mode with a �rst overshoot of 15%
and a settling time of 1.5s. The parameters are as follows:

8y 2 D1; k11 = 1642 k12 = 62:06 k13 = 303:49 �d = 0:01
8y 2 D2; k21 = 1771 k22 = 160:17 k23 = 489:92 �d = 0:01
8y 2 D3; k31 = 1899 k32 = 230:71 k33 = 634:44 �d = 0:01

On each domain, the robust stability margin, evaluated for � = 0:005 and Æ =
0:005, is �1max = 0:79, �2max = 0:85 and �3max = 3:31 respectively. Figure 2
shows the robustness analysis for each domain, and the closed-loop response for
successive step changes in the e�uent concentration CA that varies between 0.06
and 0.14. It can be observed that in the whole operating regime, the dynamical
performances obtained are similar in each sub-domain.
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Fig. 2 � Robustness analysis and closed-loop response to successive step changes
in the e�uent concentration.
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6 Conclusion

In this paper an e�ective method for robustness analysis and synthesis of a
multi-PID controller for nonlinear systems was developed via uncertain multi-
model approach. Simulation studies was used to demonstrate the e�ectiveness
of the proposed method. The main results obtained in this paper can be easily
generalized for multivariable PID controllers.

Appendix

A1. Robust design of a multi-PID controller for models of
high degree

Let Li(s) = Ri(s)Gi(s) be the open-loop transfer function for the nominal
local model number i. The transfer function of the local PID controller Ri(s)
and the transfer function of the local nominal model Gi(s) are de�ned as follows:

Gi(s) = C(sI � Ai)
�1Bi =

bimsm+���bi
1
s+bi

0

sn+a1n�1+���a
i
1
s+ai

0

Ri(s) =
ki
1

s
+ ki2s+ ki3

(28)

The consequences of the uncertainties on the parameters of the system are an
uncertainty on the static gain (i.e. bi0=a

i
0) and an uncertainty on the dynamical

behaviour of the system (i.e. the location of its poles and zeros). The objective
is then to �nd the local PID controller parameters (ki1; k

i
2; k

i
3), so that the

closed-loop system is not too sensitive to the model uncertainty and to have
acceptable dynamical performance. The sensitivity of the closed-loop system to
the uncertainty on the static gain can be reduced by an appropriate gain margin
Am. By de�nition on the gain margin we must have

Li(j!�) = Ri(j!�)G
i(j!�) = � 1

Am

(29)

where !� is the phase crossover frequencie of the loop, and j =
p�1. Relation

(29) can be rewritten as follows:8<
:

�i(!�)k
i
3 � �i(!�)

�
ki2!� � ki

1

!�

�
= � 1

Am

�i(!�)k
i
3 + �i(!�)

�
ki2!� � ki

1

!�

�
= 0

(30)

where �i(!) and �i(!) are the real part and imaginary part of Gi(j!) respecti-
vely. The solution of (30) is given by:

ki3 = � �i(!�)

(�i(!�)2 + �i(!�)2)Am

; ki1 = ki2!
2
� �

�i(!�)!�
(�i(!�)2 + �i(!�)2)Am

(31)

Thus for a given gain margin Am and a given !�, one can compute the
proportional gain ki3 and the relation between the integral gain ki1 and the
derivative gain ki2. Now we want to �nd ki2 so that the closed-loop system is
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less sensitive as possible to the uncertainty on the dynamical behaviour and to
obtain a good transient response and a good rejection on the load disturbance.
As shown in [14] these objectives can be reached by maximising the shortest
distance from the Nyquist curve of the open-loop transfer function (i.e. Li(j!))
to the critical point -1. Thus the derivative gain ki2 is determined such that:

max
ki
2

min
!
j1 + Li(j!)j (32)

Finally, given the gain margin Am and the frequency !�, the determination of
the controller parameters (ki1; k

i
2 k

i
3) is formulated as the following optimisation

problem:

8>>>>>>>><
>>>>>>>>:

max
ki
2
>0

min
!
j1 + Li(j!)j

Li(j!) = Ri(j!)Gi(j!) =
�
ki3 + j

�
ki2! � ki

1

!

��
(�i(!) + j�i(!))

ki3 = � �i(!�)

(�i(!�)2 + �i(!�)2)Am

ki1 = ki2!
2
� �

�i(!�)!�
(�i(!�)2 + �i(!�)2)Am

(33)

which is numerically easy to solve. There is no di�culty to consider the PID
controller with �ltered derivative action (i.e. using ki2s=(1+�ds) instead of ki2s).
Choosing for example �d � !�1� , has a minimal e�ect on the shape of Li(j!)

for ! 6 !�. Alternatively, the PID can be assumed of the form Ri(s) =
ki
1

s
+

ki
2
s

1+�ds
+ ki3, with �d �xed before solving the optimisation problem (33). In this

case, we have:

Li(s) = Ri(s)Gi(s) =

�
(ki3 + ki1�d) +

ki1
s

+ (ki2 + ki3�d)s

�
Gi(s)

1 + �ds
(34)

The design procedure can then be applied by rede�ning the transfer function of
the system as Gi

a(s) =
1

1+�ds
Gi(s), and considering the new PID parameters:

(ki1)
0 = ki1; (ki2)

0 = ki2 + ki3�d; (ki3)
0 = ki3 + ki1�d (35)

Note that, contrary to existing PID design methods, the proposed approach
does not use any simpli�cation on the model used for the representation of the
local behaviour of the considered system.

15



A2. Nomenclature

� a positive real scalar
�max robust stability margin

�i(!); �i(!) real and imaginary part of Gi(j!), respectively
Æ probability of non detection of an unstable system
� probability of instability
" di�erence between the reference input and the output " = r� y

� number of iterations necessary to detect an unstable system
�[:] set of eigenvalues of the matrix [:]

�max[:] largest eigenvalue of the symmetric matrix [:]
�i(:) validity function of the local model number i on the domain Di

� state vector of the PID controller � = [�1 �2]
T

�A(t); �B(t) stochastic matrices modelling the uncertainties on matrices Ai and Bi

�
(i)
A ; �

(i)
B the sample, number i, of the stochastic matrices �A(t) and �B(t)
�d time constant of the �ltered derivative action of the PID
! frequency (rad/sec)
!� phase crossover frequency

A(i;j) element in row i and column j of the matrix A

Ai; Bi; C state matrices of the local linear model on the domain Di

�Ai; �Bi upper bounds of the matrices Ai and Bi respectively
Ai; Bi lower bounds of the matrices Ai and Bi respectively
A0
i ; B

0
i �medium matrices� A0

i =
1
2
(Ai +

�Ai); B0
i = 1

2
(Bi +

�Bi)
A1
i ; B

1
i �deviation matrices� A1

i =
1
2
( �Ai �Ai); B1

i = 1
2
( �Bi �Bi)

Am gain margin and phase crossover frequency
D operating domain of the nonlinear system
Di sub-operating domain number i of D
f(:) state function of the nonlinear system

Gi(s) transfer function of the nominal local model number i
h(:) output function of the nonlinear system

i; j; k; q indices
ki, kd, kp tuning parameters of the single PID controller
ki1, k

i
2, k

i
3 tuning parameters of the local PID controller number i
l number of local models
n order of the model

Ri(s) Transfer function of the local PID controller number i
r reference input
s Laplace variable
u input variable of the system

V (:); Vj(:) Lyapunov functions
vi(:) interpolation function of the multi-PID controller
wi(:) interpolation function of the multimodel
xa augmented state vector xa = [xT �T ]T

x; y state vector and output of the system, respectively
Prf:g probability of the event f:g

Ref:g, Imf:g Real and Imaginary part respectively of the complex number f:g
M1 ~M2 product element-by-element of the matrices M1 and M2

M1 6e M2 inequality element-by-element of the matrices M1 and M2

(:)T transpose of the vector or the matrix (:)
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