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Abstract. This paper introduces a new control scheme which incorporate the concept of shaping fil-
ter together with the use of the ν-gap metric and the robust design of a structured controller. The
main motivation in doing this is related to the development of efficient control laws for piezoelectric
microactuators in the context of micromanipulation and microassembly. These systems are intrinsically
nonlinear and very sensitive to the environmental conditions, thus requiring robust control to ensure a
precise positioning despite disturbances. Designing a structured controller is known to be computation-
ally intractable via the traditional H∞ method. This is mainly due to the non-convexity of the resulting
control problem which is of fixed order or structure type. To solve this kind of control problem easily
and directly, without using any complicated mathematical manipulations and without using too many
“user defined” parameters, we utilize the heuristic Kalman algorithm (HKA) for the resolution of the un-
derlying constrained non-convex optimization problem. The experimental results validate the proposed
technique and demonstrate its convenience for the development of fast and precise micropositioning
systems.
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1 Introduction

Piezoelectric materials are commonly used to develop systems acting at the micro- or nano-scale.

This recognition is due to the high resolution, high bandwidth and high force density that they

can offer [8]. They can be divided into two main categories as actuators: continuous (benders,

stack, tube, etc.) or discrete (stickslip, inch-worm etc.). One of the applications of piezoelectric

materials is the piezogripper which is used to perform micromanipulation/microassembly of small

parts, such as biological objects or microstructures [17].

A piezogripper is made up of two piezoelectric cantilevers. When the cantilevers are subjected

to electric voltage, they bend and can maintain and/or position a manipulated micro-object. If

properly controlled, piezogrippers can pick, transport and place micro-objects with micrometric
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or submicrometric positioning accuracy. Such a precise positioning can be effectively achieved

through the use of a feedback controller, which, if properly designed, results in a closed-loop

system relatively insensitive to the external disturbances and modeling errors. This is an essential

property for applications requiring micrometric positioning accuracy. Consequently, developing

controller tuning techniques satisfying a set of imposed performance specifications are of great

practical importance.

Broadly speaking, the various approaches dedicated to the control of piezoelectric actuators

can be divided into three family of methods: those that take explicitly into account the non

linearity of the system, mainly the hysteresis, those that control the system in such a way that the

non linearity is nearly cancelled, and those that utilize a linear or a set of linear approximations

of the system.

In the first family of methods the majority of the proposed approaches are based on feedfor-

ward hysteresis compensation (see for instance [12], [16], [15], [6] and references therein). The

principle is to control the system through an inverse hysteresis operator in order to cancel the

nonlinearity. This inverse compensation is never perfect and thus a feedback control is employed

to minimize the disturbances effects.

In the second family of methods, the main proposed approaches consist in the use of a charge

control instead of a voltage control [4], [14]. The relation between the electrical charge applied to

the piezoelectric actuator and its displacement is indeed linear (the hysteresis effect is strongly

reduced). Therefore, classical control techniques can be directly applied in a charge control

scheme. However, the main difficulty with this approach resides in driving highly capacitive

loads with available charge/current amplifiers [6].

In the third family of methods, the behaviour of the piezoelectric actuators is captured trough

an uncertain model, which is typically a set of linear representation of the system. Piezoelectric

cantilevers are indeed affected by ferroelectric nonlinearities such as hysteresis and creep and

are also very sensitive to environmental conditions such as temperature, vibration etc. As a

consequence, their static actuation characteristic is nonlinear and also their dynamical behavior

may vary during operation. These variations cannot be taken into account via an LTI model,

therefore a controller designed with a simple LTI model will work poorly or even become unstable.

A powerful way to tackle this kind of difficulty is to consider not just a single LTI model but a

family of LTI models that can account for the various dynamical behaviors observed on the real

system [24]. This principle leads to the notion of uncertain linear system, which can be defined as

the set G = {G(∆) : ∆ ∈ D∆} where G(.) is a linear operator which associates an output vector
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to a given input vector. This operator is parametrized by the uncertainty block ∆ ∈ D∆, where

D∆ can be a set of parameter vectors reflecting our ignorance about the system parameters. and

also a set of stable systems allowing to take into account the neglected dynamics. Thus, for every

∆ ∈ D∆, we have a particular system model denoted G(∆). The controller design is then based

on the uncertain model G of the system. This approach allows obtaining controllers that can

have acceptable performance while maintaining a suitable level of robustness [19], [10], see also

[6] and references therein.

In these three family of methods, the problem of designing a suitable controller for the

piezoelectric actuator arises. To this end many techniques have been used including adaptive

control, sliding mode control, gain scheduling, robust control etc, see the survey [6] for a more

detailed study.

The method presented in this paper belongs to the third family of methods and we focus

mainly on the robust controller design problem which consists in finding a feedback controller

ensuring the stability and acceptable performance for a given uncertain system G. The tradi-

tional H∞ control has been proved as a powerful way to solve the robust control problem [27].

However, the controller thus obtained is of high order. This is a serious limitation especially

when the memory and computational power resources are limited, such in embedded controllers.

Moreover, traditional robust control is unable to incorporate constraints into the structure of the

controller. This is also a strong limitation especially when the control law must be implemented

into commercially available controllers which usually have a fixed structure such as a PID [22],

[7].

In this paper we introduce a new control scheme for piezoelectric actuator which incorporate

the concept of shaping filter together with the use of the ν-gap metric and the robust design of

a structured controller (PID type). The shaping filter can be seen as an open-loop controller

designed to obtain a desired transfer function G(s) chosen in accordance to the desired perfor-

mance. However, since the system is only known through a set of models, the shaping filter is

designed robustly in the sense that the distance measure (the ν-gap metric) between a mem-

ber of the uncertain system G and the desired transfer function G(s) is as small as possible.

Then a robust feedback controller (PID type) is designed to minimize the disturbances effect.

For solving the resulting nonconvex optimization problem we make use of the Heuristic Kalman

Algorithm (HKA) [21], [23] because it requires only three “user defined” parameters. This is a

major advantage over other stochastic optimization methods which require usually many more

parameters to adjust (see [24] for a more detailed discussion about this point).
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The remaining part of this paper is organized as follows. In Section 2, a general formulation

of the robust structured control of piezoelectric microactuators represented by an uncertain

parametric model is presented. This is done through the use of the ν-gap metric which is

a measure of the closeness of two systems in terms of their closed-loop behavior. Section 3

describes the experimental setup used to validate the proposed design method. Experimental

results show the efficiency of the designed structured controller. Finally, Section 4 concludes this

paper.

2 Robust Control of Piezoelectric Cantilevers

In this section, the robust control problem of a piezoelectric microactuator is formulated as an

optimization problem of the form given in [22], which can be solved via the Heristic Kalman

Algorithm [23], [24].

The actuator considered in our experiments is a composite bimorph piezoelectric cantilever

of a rectangular cross-section. This kind of actuator is realized with two layers: an active, piezo-

electric layer (for instance Lead-Zirconate-Titanate, or PZT) and a passive layer (for instance

Nickel). According to the reverse piezoelectric effect, a strain (contraction or expansion) results

in the active layer under the application of an electrical field, which leads to a general deflection

δ of the cantilever (see figure 1). The value of the tip deflection can then be accurately controlled

Figure 1: Principle of a piezoelectric actuator.

by an appropriate choice of the applied voltage. This can be done very efficiently through the use

of a feedback controller. This aspect will be considered in Section 2.5 through the formulation

of a robust control problem. Before that, we have to introduce some basic elements which are

necessary for the robust control problem formulation.
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2.1 System Model

The mathematical description of a real system involves some physical parameters whose values

are uncertain. Accordingly, it will be assumed that the system to be controlled can be represented

by an uncertain model defined by ẋ(t)

y(t)

 = G

 x(t)

u(t)

 , G =

G̃ =

 A(θ) B(θ)

C(θ) D(θ)

 : θ ∈ Θ

 (1)

where , x ∈ Rnx , u ∈ Rnu , y ∈ Rny are the state vector, the input vector and the output

vector, respectively. The matrices A(.), B(.), C(.) and D(.) are of appropriate dimension and

depend on the uncertain parameter vector θ. The parameter vector is not known a priori, the

only knowledge we have is that it belongs to a certain bounded set Θ. Generally, the set of vector

parameters Θ is defined as a hyper-rectangle in the parameter space, called the parameter box .

This means that each uncertain or time-varying parameter θi belongs to a known interval i.e.,

θi ∈ [θi, θ̄i], where the bounds θi and θ̄i are assumed to be known.

2.2 Structured Controller

In the sequel, the notation [G, K] represents the closed-loop interconnection between the un-

certain system G, defined by (1) and the controller K. In our framework, K is a structured

controller (e.g., a PID), which must be designed so that the closed-loop system [G, K] satisfies

some desired performance. In the case of a MIMO PID controller, K matrix is given by

K(s) = KP +KI
1

s
+KD

s

1 + τs
=

 AK BK

CK DK

 =


0 0 KI

0 − 1
τ I − 1

τ2KD

I I KP + 1
τKD

 (2)

where KP is the proportional gain matrix, KI and KD are the integral and derivative gain

matrices respectively, and τ is the time constant of the filter applied to the derivative action.

This low-pass first-order filter ensures the properness of the PID controller and thus its physical

realizability. We denote by q = vect(K) = vect(KP ,KI ,KD, τ) the controller parameter vector.

This vector belongs to the set D of possible settings for the controller, we have

q ∈ D = {q ∈ Rnq : q � q � q̄} (3)

where the bounds q and q̄ reflect the search domain over which the robust controller design prob-

lem is considered. A fundamental requirement of any control system is stability. Given the set
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of possible settings D, we must retain only those ensuring the stability of the closed-loop system

[G, K]. We denote by KG the set of stabilizing structured controllers of the uncertain system G,

we have: KG = {q = vect(K) ∈ D : [G, K] is stable}. This is a robust stability condition since a

single controller must stabilize a set of plants.

2.3 Robust Stability/performance Test via ν−Gap Metric

The ν-gap metric is a measure of the closeness of two systems in terms of their closed-loop

behavior [26]. The ν-gap metric between two systems G1 and G2, denoted δν(G1, G2), is defined

as √
1− δν(G1, G2)2 =

∥∥∥∥∥∥
 G2

I

 (I +G∗1G2)−1
[
G∗1 I

]∥∥∥∥∥∥
−1

∞

(4)

if η([G2, −G∗1]) = η([G1, −G∗1]), or δν(G1, G2) = 1 otherwise. The notation η(.) represents

the number of right half plane poles of the system passed in argument and [. , .] represents the

standard feedback interconnection of the systems passed in argument. Small values of δν(G1, G2)

mean that the systems G1 and G2 are similar, thus we have δν(G1, G2) = 0 only if G1 = G2. A

remarkable property is that the generalized stability margin bG,K which will be defined in (6),

and the uncertainty measure δν(G1, G2) are related by the following inequality (see [26])

arcsin(bG2,K) ≥ arcsin(bG1,K)− arcsin(δν(G1, G2)) =⇒ bG2,K ≥ bG1,K − δν(G1, G2) (5)

where bG,K is the generalized stability margin defined as

bG,K =


∥∥∥∥∥∥
 I

−K

 (I +GK)−1
[
G I

]∥∥∥∥∥∥
−1

∞

if [G, K] is stable,

0 otherwise.

(6)

The quantity bG,K can be seen as a performance measure of the closed-loop system composed by

G and K. High values of bG,K mean good performance of the closed-loop system. Therefore the

inequality means that if a controller K performs well with the system G1, and if the difference

between G1 and G2 is sufficiently small, then K will also perform well with G2. More precisely,

according to (5), the closed-loop system [G2, K] is stable if bG2,K > 0, from (5), we can see that

bG2,K > 0 if and only if bG1,K > δν(G1, G2). Therefore, if bG1,K > δν(G1, G2) then K, which is

a stabilizing controller for G1, is also a stabilizing controller for G2. We then have the following

result [26]. If K is a stabilizing controller for a given system G, with bG,K = α, then K is also

a stabilizing controller for any system G̃ satisfying δν(G, G̃) < α. Note that the computation of
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δν(G, G̃) does not involve the expression of K (see relation 4), therefore, when trying to stabilize

an uncertain system, we can test the above condition before calculating the controller. To ensure

the robust stability/performance of the closed-loop system against parametric uncertainties, we

have to determine the largest ν-gap metric between the nominal system and G̃ ∈ G. This can be

done by solving the following maximization problem

maximize
G̃∈G

δν(G, G̃) (7)

This non convex problem can be solved via the HKA presented in Section ??. Note that (7) is

independent of the controller and can then be solved before any design procedure.

Nominal System. Usually, the nominal model can be any member of the set G. For instance,

we can pick-up randomly a model out of the uncertain system G and declare it as the nominal

model. As seen before, a controller K(s) designed with one member of the set G, is satisfying for

any member of G if bG,K > νmax, where νmax is solution of (7). Thus we can see that the choice

of the nominal model is unimportant provided that it belongs to G. However, to simplify the

design stage, it is often desirable to transform the original robust control problem into another,

by an appropriate choice of a nominal model not member of G. This can be done by shaping the

uncertain system in such a way that it becomes close to the chosen nominal model. To be more

precise, let G be the nominal model that we want to use for the design of the controller, and let

F (s) be the unknown shaping filter. The uncertain shaped system, denoted GF must be as close

as possible to the nominal model G. This can be achieved in the ν-gap metric sense by finding

the shaping filter F solution to the following optimization problem

minimize
F∈F⊂RH∞

max
G̃∈G

δν(G̃F,G) (8)

where RH∞ is the set of proper and stable transfer matrices. The choice of the set F is problem

dependant and is linked to the structure of the uncertain system G. As illustrated in Section

3.1, the nominal model together with the set of shaping filters F , can be determined through an

inversion principle.

2.4 Performance Specifications

The desired performances of the closed-loop system are very often specified by some characteris-

tics of the step response, namely the damping (overshoot), the settling time and the steady state

error. For instance, a settling time of about 5 ms, a maximum steady state error of 0.1% and no

overshoot are usual requirements for the piezoelectric microactuators used in precise positioning
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systems [10]. This kind of specifications can be enforced by appropriately shaping the largest

singular value of the sensitivity function. This can be done as follows ‖WS‖∞ ≤ 1, where S is

the sensitivity function defined by S = (I +GK)−1, and W is a frequency-dependent weighting

functions, which is set in order to meet the performance specifications of the closed-loop system.

The problem is then to find a stabilizing controller that satisfies this H∞-norm constraint.

2.5 Formulation of the Robust Control Design Problem

We are now in position to formulate the robust control design problem. Given the uncertain

system G defined by (1), a nominal model G(s) which can be chosen as a member1 of G, a

structured controller K(s, q), where q ∈ D is the controller parameter vector and D the set of

possible setting (see (2) and (3)), the problem is to find q ∈ D such that the uncertain closed-loop

system [G,K] is stable while satisfying the desired performance specified by ‖WS‖∞ ≤ 1, with a

minimal decay rate. As seen in Section 2.3, the robust stability/performance is ensured if bG,K

is bigger than the largest ν-gap metric in G. Taking all that together, the controller parameter

vector q ensuring the above requirements is the solution to the following optimization problem:

minimize max
i

Re(λi([G, K]))

subject to:

∥∥∥∥∥∥
 I

−K

 (I +GK)−1
[
G I

]∥∥∥∥∥∥
−1

∞

≥ max
G̃∈G

δν(G, G̃)

‖WS‖∞ ≤ 1, q ∈ D

(9)

which is of the form given in [22] and can be solved with the HKA [24]. Note that maxG̃∈G δν(G, G̃)

does not involve K and can then be calculated before solving (9).

3 Presentation of the Experimental Setup

The proposed design method is now applied to the experimental setup shown in figure 2. The

actuator is a composite bimorph piezoelectric cantilever of dimensions l × w × h = 18.0× 2.0×

0.3 mm (clamped region about 3 mm). The tip deflection of the piezoelectric cantilever, which is

of about 0.8µm per volt, is measured by a Keyence non contact optical sensor with a resolution

of about 10nm. A DSP card (type dSPACE DS1103) is used for the real time implementation

1Alternatively, the nominal model G(s) can be chosen not in G through the use of a shaping filter (see Section

2.3).
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of the controller. A high voltage amplifier is used to feed the piezoelectric actuator from the

control signal delivered by the DSP card.

Figure 2: Block diagram and picture of the experimental setup.

3.1 Modeling and Identification

For a given operating point, the relation between the control input u and the output deflection

at the tip of a piezoelectric cantilever can be modelled as in [15] by δ(s) = G(s)u(s), where G(s)

is the transfer function that must be identified via experimental data. We have found that a

transfer function of the form (b1s+b0)e−t0s/(s2 +a1s+a0) fits well the measured data for various

operating conditions. The dead-time t0 accounts for the controller sampling time as well as for

the sensory delays whose effects can not be neglected particularly for such fast settling times.

To identify the parameters of the model, a succession of steps of amplitude ±20V around 0V,

40V and 80V has been applied to the piezoelectric actuator. As an example, Figure 3 shows the

results obtained for a step response of amplitude 20V around 0V. In this figure the model G+
0 (s)

represents the transfer functions identified for a step input of amplitude +20V around 0V. It

can be seen that the model G+
0 (s) fits well the experimental data corresponding to the 20V step

response. For each step response, the parameter vector (a0, a1, b0, b1, b2)T has been evaluated

via the output error method which is available in the Matlab System Identification Toolbox.

9



Figure 3: Step response of the piezoelectric actuator (amplitude 20V around 0V), compared with

the step response of the model G+
0 (s).

For the considered piezoelectric actuator, the following uncertain system can then be defined

G =

{
G(s) =

k(s+ 39850)

s2 + a1s+ a0
e−0.0002s : θ ≤ (k, a0, a1)T ≤ θ̄

}
(10)

where θ and θ̄ are respectively the lower bound and the upper bound of the parameters of

G(s). These bounds can be determined as in [10] from the identified models. The bounds

of the parametric uncertainties have been found to be θ = (370, 2.01 × 107, 50)T , and θ̄ =

(450, 2.15× 107, 65)T . By solving the optimization problem (7) with HKA, we have found that

the maximum of the ν-gap metric within G is less than 0.3. Thus, if a controller K is designed

with a member of G such that bG,K > νG then this controller is stabilizing for the uncertain

system G.

Nominal Model. To design the controller, we have to define a nominal model for the system

to be controlled. Although this can be done by taking a member of G, we would like to illustrate

the principle of the shaping filter presented in Section 2.3. To this end, assume that the nominal

model is chosen according to the desired performances: settling time less than or equal to 5

ms, maximum steady state error less than or equal to 0.1%, no overshoot. In this respect, the

nominal model can be taken as follows

G(s) = e−0.0002s/((0.005/3)s+ 1) (11)

We have included the 0.2 ms dead-time introduced by the laser sensor in the system. This

delay was causing closed-loop instability and could not be ignored in any way for high dynamic
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performance requirements. Now the objective is to determine a shaping filter F (s) such that

the ν-gap metric δν(G̃F,G) is as small as possible for any G̃ ∈ G (see (8)). According to the

structure of G̃ and the nominal model (11), the shaping filter can be chosen as

F (s) =
s2 + α1s+ α0

κ(s+ 39850)( 0.005
3 s+ 1)

(12)

Note that F (s) is somehow a filtered version of the inverse of G̃. The parameters (κ, α0, α1)T of

the shaping filter are determined in order to minimize the largest ν-gap metric between G and

the uncertain shaped system GF . This is done by solving the following optimization problem

(see Section 2.3)

minimize max
G̃∈G

δν(G̃F,G)

subject to F ∈ F =

{
s2 + α1s+ α0

κ(s+ 39850)( 0.005
3 s+ 1)

: θ ≤ (κ, α0, α1)T ≤ θ̄
} (13)

where the bounds θ and θ̄ are the same as those of the uncertain system G. Using the HKA,

the following solution has been found: κ = 444.67, α0 = 2.026 × 107, α1 = 64.8. The largest

ν-gap metric between G(s) and the uncertain shaped system GF has then been found to be

less than 0.37. Consequently, if a controller K is designed with the nominal model G such that

bG,K > 0.37 then this controller is satisfactory for any member of the shaped system GF .

3.2 Structured Controller Design

Given a nominal model of the piezoelectric actuator, the problem is to design a robust PID

controller (2), so that the closed-loop system satisfies the performance specifications. As seen

in Section 2.5, this can be done by solving the optimization problem (9). In what follows, after

having introduced the weighting function on S, the PID controller is designed in the case of a

nominal model G ∈ G, and in the case where the nominal model is obtained via a shaping filter.

Finally a comparison is done with the standard H∞ control.

Weighting Functions. The controller must be designed to satisfy the following performance

requirements: settling time less than or equal to 5 ms, maximum steady state error less than

or equal to 0.1%, no overshoot. As seen in Section 2.4, these requirements can be satisfied by

introducing a constraint on the sensitivity function of the form ‖W1S‖∞ ≤ 1. The weighting

function W1 is chosen so that 1/|W1(jω)| meets the performance requirement. One can check

that this can be done via the following weighting function W1(s) = (s+ 628)/(s+ 0.628).
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Controller Design via a Shaping Filter. We are now considering the uncertain shaped

system GF where the shaping filter F (s) is defined by (12). We can then make use of the nominal

model (11) for the design of the PID controller. The transfer function (11) is approximated by a

rational model using 2nd-order Padé approximation of the delays [25]. This lead to a 3th-order

model. Problem (9) has been solved using HKA (N = 50, Nξ = 3, and α = 0.3) over the search

domain D defined by q = [0 0 0 10−6]T and q̄ = [10 10000 10 1]T , with maxG̃∈G δν(G, G̃) = 0.4.

The following controller parameters have been found

KP = 3.82, KI = 4905, KD
∼= 0 (14)

Note that the resulting controller is of PI type. Figure 4 shows the nominal step response of the

closed-loop system. We can see that the performance requirements are satisfied. Figure 4 also

Figure 4: Simulations of the closed-loop response. On the left, the nominal case (system model

(11)), on the right, the uncertain case obtained by taking various members of GF .

shows the unit step response of the closed-loop system for various members of G. This figure has

been obtained in the same conditions as before. It can be observed that the closed-loop system

is relatively insensitive to the considered parametric uncertainties. Note that even in the worst

case, the settling time remains very small, less than 3ms. This result is twice better than the

one obtained in [10], under very similar experimental conditions.
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Controller Design via the Standard H∞Method. It is interesting to compare the preceding

designs with the one achieved by the standard H∞ sensitivity method. According to this method,

a full order unstructured controller is obtained that minimizes ‖Fl(P,K)‖∞, where Fl(P,K) is

the closed-loop transfer matrix and P is the augmented plant, i.e. including the weighting func-

tions. The augmented plant can be calculated with the MatLab command P=augw(G,W1,[],[]),

where G is the central model of G (i.e., θ = (410, 2.08×107, 57.5)T ), and W1 the weighting function

introduced in section 3.2. The controller K can then be obtained by using the MatLab function

hinfsyn of the Robust Control Toolbox. This function solves coupled Riccati equations for de-

signing the full-order H∞-optimal controller. The use of the MatLab command K=hinfsyn(P)

gives

K(s) =
18393587.592N1(s)N2(s)

D1(s)D2(s)

N1(s) = (s2 + 57.5s+ 2.01× 107)

N2(s) = (s2 + 3× 104s+ 3× 108)

D1(s) = (s+ 1.316× 106)(s+ 3.985× 104)(s+ 0.2245)

D2(s) = (s2 + 2.501× 104s+ 3.216× 109)

(15)

The closed-loop step response obtained with the controller (15) is shown in figure 5. It can be

observed that in the worst-case, the settling time is about 6.5 ms. Note that the result obtained

via the shaping filter approach is significantly better and, additionally, the structured controller

is of low order.

3.3 Experimental Results

In this section the controller designed via the shaping filter approach is applied to the experi-

mental set-up presented in figure 2. The controller has been implemented in a real-time DSP

board with a sample frequency of 20 Khz.

Figure 6 shows the experimental results when a step reference δr of 20µm is applied to the

system. The figure on the right is a zoom of the figure on the left for the time domain 0.015-0.035

s. The dotted line represents 0.25 times the control signal, in Volts, delivered by the high voltage

amplifier. We can see that this experimental result is in good agreement with those obtained

in simulation (see figure 4). The measured settling time is about 2.56 ms, which is much better

than the result obtained in [10] for the same kind of piezoelectric actuators.
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Figure 5: Step response of the H∞ closed-loop system, in the nominal case and in the uncertain

case (system model (10)).

Figure 6: Experimental step response of the closed-loop system.

4 Conclusion

In this paper, the problem of designing a robust structured controller for uncertain piezoelectric

microactuators has been investigated. This kind of system is indeed intrinsically nonlinear and
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very sensitive to the environmental conditions and thus requires a robust control to ensure a

precise positioning despite the disturbances acting on the system.

To this end, we have introduced a new control scheme which incorporate the concept of shap-

ing filter together with the use of the ν-gap metric and the robust design of a structured controller

(PID type). The shaping filter is designed to obtain a desired transfer function G(s) chosen in

accordance to the desired performance. This has been done by minimizing the distance, in the ν-

gap metric sense, between a member of the uncertain system G and the desired transfer function

G(s). A robust structured controller has then been designed to minimize the disturbances effect.

This sort of control problem usually results in a non-convex constrained optimization problem

which is known to be very difficult to deal with. This is why, to solve in a direct way this kind of

control problem, we have proposed to use the Heuristic Kalman Algorithm. Indeed, HKA runs

without any conservative assumption usually required in the conventional methods. In addition

it allows to determine the controller parameters by solving the constrained optimization problem

without requiring too many design parameters, unlike other stochastic algorithms.

The performance obtained with the proposed controller design method compare favourably

to other approaches. This has been possible by the treatment of the dead time induced by the

sensor as well as by using the concept of shaping filter. The experimental results validate the

proposed technique and demonstrate its convenience for the development of fast and precise

micropositioning devices.
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[1] K.J. Åström & T. Hägglund. Advanced PID Control. ISA-The Instrumentation, Systems, and Automation

Society, 2006.

[2] P. Apkarian, V. Bompart & D. Noll. Nonsmooth structured control design with application to PID loop-
shaping of a process. Int. J. Robust Nonlinear Control, vol. 17, pp. 1320-1342, 2007.

[3] V. Balakrishnan & S. Boyd. Global Optimization in Control System Analysis and Design In Control and
Dynamic Systems: Advances in Theory and Applications, chapter 1, pp. 1-56, Academic Press, 1992.

[4] N. Chuang, I. R. Petersen. Robust Hinf control of hysteresis in a piezoelectric stack actuator. Proceedings of
the 17th World Congress of the International Federation of Automatic Control, Seoul, Korea, July 6-11, 2008.

[5] Coello, C. A. C. Theoretical and numerical constraint handling techniques used with evolutionary algorithms:
a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, vol. 191(11-12),
pp. 1245-1287, 2002.

[6] S. Devasia, E. Eleftheriou, & S. O. R. Moheimani. A Survey of Control Issues in Nanopositioning. IEEE
Transactions on Control Systems Technology, Vol. 15(5), pp. 802-823, 2007.

15



[7] E. Grassi & K. Tsakalis. PID controller tuning by frequency loop-shaping: Application to diffusion furnace
temperature control. IEEE Transactions on Control Systems Technology, vol. 8, pp. 842-847, 2000.

[8] I. A. Ivan, M. Rakotondrabe, P. Lutz & N. Chaillet. Self-Sensing Measurement in Piezoelectric Cantilevered
Actuators for Micromanipulation and Microassembly Contexts. In Signal Measurement and Estimation Tech-
niques for Micro and Nanotechnology, Chapter 2, pp. 29-69, Springer, 2011.

[9] M. Jamshidi, R. A. Krohling, L. dos S. Coelho & P. J. Fleming. Robust Control Systems With Genetic
Algorithms, CRC Press, 2003.

[10] S. Khadraoui, M. Rakotondrabe & P. Lutz. Interval Modeling and Robust Control of Piezoelectric Microac-
tuators. IEEE Transactions on Control Systems Technology, Vol. 20(2), pp. 486-494, 2012.

[11] T.H. Kim, I. Maruta & T. Sugie. Robust PID controller tuning based on the constrained particle swarm
optimization. Automatica, vol. 44, pp. 1104-1110, 2008.

[12] K. Kuhnene and H. Janocha. Inverse feedforward controller for complex hysteretic nonlinearities in smart-
material systems. Control Intell. Syst., vol. 29, no. 3, pp. 74?83, 2001.

[13] G. P. Liu, J. B. Yang & J. F. Whidborne. Multiobjective Optimisation and Control. Research Studies Press
LTD, 2003.

[14] S. O. R. Moheimani, & B. J. G. Vautier. Resonant control of structural vibration using charge-driven piezo-
electric actuators. IEEE Transactions on Control Systems Technology, Vol.13(6), pp. 1021-1035, 2005.

[15] M. Rakotondrabe, Y. Haddab & P. Lutz. Quadrilateral modelling and robust control of a nonlinear piezo-
electric cantilever IEEE Transactions on Control Systems Technology, Vol. 17(3), pp. 528-539, 2009.

[16] M. Rakotondrabe & Y. Le Gorrec. Force control in piezoelectric microactuators using self scheduled Hinf
technique. IFAC Symposium on Mechatronic Systems, Cambridge, Massachusetts United States, September
13-15, 2010.

[17] M. Rakotondrabe & I. A. Ivan. Development and force/position control of a new hybrid thermo-piezoelectric
microgripper dedicated to micromanipulation tasks, IEEE Transactions on Automation Science & Engineering,
vol. 8(4), pp. 824-834, 2011.

[18] R. T. Rockafellar. Lagrange multipliers and optimality. SIAM Review, vol. 35, pp. 183-238, 1993.

[19] S. Salapaka, A. Sebastian, J. P. Cleveland, & M. V. Salapaka. High bandwidth nano-positioner: A robust
control approach. Review of Scientific Instruments, Vol. 73(9), 2002.

[20] K. Sedlaczek & P. Eberhard. Using augmented Lagrangian particle swarm optimization for constrained
problems in engineering. Structural and Multidisciplinary Optimization. vol. 32, pp. 277-286, 2006.

[21] R. Toscano and P. Lyonnet. Heuristic Kalman Algorithm for solving optimization problems. IEEE Transac-
tion on Systems, Man, and Cybernetics, Part B, Vol. 35, pp. 1231-1244, 2009.

[22] R. Toscano and P. Lyonnet. Robust PID controller tuning based on the Heuristic Kalman Algorithm. Auto-
matica, Vol. 45(9), pp. 2099-2106, 2009.

[23] R. Toscano and P. Lyonnet. A new heuristic approach for non-convex optimization. Information Sciences,
vol. 180(10), pp. 1955-1966, 2010.

[24] R. Toscano. Structured Controllers for Uncertain Systems - A Stochastic Optimization Approach. Springer,
2013.
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