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Abstract. This paper presents a simple but e�ective method for �nding a robust output

feedback controller via a random search algorithm. The convergence of this algorithm can be

guaranteed. Moreover, the probability to �nd a solution as well as the number of random trials

can be estimated. The robustness of the closed loop system is improved by the minimization of

a given cost function re�ecting the performance of the controller for a set of plants. Simulation

studies are used to demonstrate the e�ectiveness of the proposed method.
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1 Introduction

The static output feedback is an important issue not yet entirely solved
(e.g., see Byrnes, 1989; Bernstein, 1992; Blondel, Gevers and Lindquist, 1995;
Syrmos & al.; 1997). The problem can be stated as follows, given a linear time-
invariant system, �nd a static output feedback so that the closed-loop system has
some desirable performances. It is well known that the performances of feedback
control systems are mainly determined by the locality of their closed-loop poles,
it follows that a natural design approach to �nd a static output feedback is by
means of pole placement. Compared to pole placement via state feedback, the
same problem via output feedback is more complex. In fact, the static output
feedback problem in the case where the feedback gains are constrained to lie in
some intervals is NP-hard (Blondel and Tsitsiklis, 1997, 2000; Fu, 2004).

Starting from this negative result numerous progress has been made which
modi�es our notion of solving a given problem. In particular, randomized al-
gorithms have recently received more attention in the literature. Indeed, for a
randomized algorithm it is not required that it works all of the time but most of
the time, in return, this kind of algorithm runs in polynomial-time (Vidyasagar,
2001). The idea of using a random algorithm to solve a complex problem is not
new, and was �rst proposed, in the domain of automatic control, by Matyas
(1965), further developments can be found in Baba (1989) and references the-
rein, Goldberg (1989), Porter (1995), Khargonekar and Tikku (1996), Tempo,
Bai and Dabbene (1997), Vidyasagar (1997), Vidyasagar (2001), Khaki-Sedigh
and Bavafa-Toosi (2001), Koltchinskii & al. (2001), Abdallah & al. (2002).

In the same way as Khaki-Sedigh and Bavafa-Toosi (2001), the main objec-
tive of this paper is to present a new random approach to �nd a static output
feedback for uncertain linear systems, which is simple and easy to use. Compared
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with the work of Khaki-Sedigh and Bavafa-Toosi (2001), the main contribution
of the present paper is a mathematical justi�cation in the use of the random
search approach. In the proposed method, the probability to �nd a solution as
well as the number of random trials can be evaluated. The robustness of the
closed loop system is improved by the minimization of a given cost function
re�ecting the performance of the controller for a set of plants.

The paper is organized as follows. In section 2, the problem of static output
feedback is formulated. Section 3 shows that the problem of regional pole place-
ment (i.e. pole placement in a desirable domain) can be solved by an appropriate
random search algorithm. The robustness issue is discussed in section 4, and sec-
tion 5 presents various simulation results to demonstrate the e�ectiveness of this
approach. Finally, section 6 concludes this paper.

2 Problem statement

Consider a multivariable linear dynamic system described by�
_x(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(1)

where x 2 Rn, u 2 Rm and y 2 Rp represent the state, input and output
vectors, respectively, A 2 Rn�n, B 2 Rn�m and C 2 Rp�n are known constant
matrices. As usual, it is assumed that rank[B] = m and rank[C] = p. By ap-
plying a constant output feedback law

u(t) = r(t) +Ky(t) (2)

to (1), the closed-loop system is given as�
_x(t) = (A+BKC)x(t) +Br(t)
y(t) = Cx(t)

(3)

where r 2 Rm is the reference input vector and K 2 Rm�p the output feedback
gain matrix.

It was established that under the condition of (A;B) controllable and (C;A)
observable and that m + p > n (see Davison and Wang, 1975; Kimura, 1975)
or mp > n (e.g. see Wang, 1996), it exists a feedback gain matrix K such that
�(A + BKC) = �, where � is a given set of real and self-conjugate complex
numbers, � = f�1;�2; : : : ;�ng are the desired poles of the closed-loop system
and �(M) is the spectrum of the square matrix M .

More precisely, mp > n is a su�cient condition for the existence of a static
output feedback to solve the problem of multivariable pole placement (MVPP)
for the generic system, i.e. for almost all systems (Wang 1993). The condi-
tion mp > n is a seminal result which is lesser conservative than m + p > n.
Concerning this problem, further developments - including some necessary and
su�cient conditions - can be found in Syrmos and Lewis (1994), Alexandridis
and Paraskevopoulos (1996), Khaki-Sedigh and Bavafa-Toosi (2001).
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The exact pole placement problem for output feedback is to �nd such a K.
However, it is commonly recognized that in practical applications, the poles
assigned are not required to be exactly the same as those speci�ed. This is
because the closed-loop system with poles approximately close to the desired
one will possess similar desired behavior (Chu, 1993). In fact, from a practical
point of view, it is su�cient to consider the pole placement in a speci�ed stable
region D of the complex plane, Khaki-Sedigh and Bavafa-Toosi (2001).

As shown in Blondel and Tsitsiklis (1997), the problem of �nding an output
feedback matrix K such that kij 6 kij 6 �kij 8i;j, and such that A + BKC is
a stable matrix is NP-hard. In a more recent work, Fu (2004) shows that the
problem of pole placement via unconstrained static output feedback is also NP-
hard. This implies that no e�cient algorithm exists for solving such problems.
In other words if a general algorithm for solving the static output feedback
problem is derived, it is an exponential-time algorithm.

An alternative approach to solve this kind of problem is to use a non deter-
ministic algorithm. The drawback of this approach is that the probability that
the algorithm fails is not equal to zero for a �nite number of iterations, but can
be made arbitrarily small as the number of iterations increases. In return for
this compromise, one hopes that the algorithm runs in polynomial time.

In the next section a random search algorithm is proposed in order to �nd
a constrained output feedback matrix K (i.e. such that kij 6 kij 6 �kij 8i;j)
such that �(A+BKC) � D, where D is a speci�ed region of the complex plane
determined in order to obtain a desired behavior. This problem is also NP-hard.

3 Random search algorithm approach

In this section a possible approach to solve the problem of pole placement in
a desirable domain D � C� is presented. Suppose the existence of a solution,
the following theorem can be used for �nding a constrained output feedback
matrix for the system (1).

Theorem 3.1. If there exists an output feedback matrix K such that kij 6 kij 6
�kij 8i;j, and such that �(A+ BKC) � D, with D � C�, then the algorithm

1. Generate a m � p matrix K with random uniformly distributed elements
kij on the intervals [kij ;

�kij ] 8i;j.

2. If �(A +BKC) 6� D go to step 1, otherwise stop.

converges certainly to a solution.

Proof. Let K be the set of D-stabilizing output feedback matrices K de�ned
by

K =
�
K 2 Rm�p : �(A+BKC) � D; kij 6 kij 6 �kij 8i;j

	
(4)
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Let us consider n iterations of the algorithm, the probability so that K 62 K is
given by the binomial probability distribution

PfK 62 Kg =

�
n!

r!(n � r)!
�r(1� �)n�r

�
r=0

= (1� �)n (5)

where r is the number of successes (i.e. the number of times that K 2 K) and �
the probability of elementary success. For � > 0 it is clear that limn!1(1��)n =
0 the algorithm then certainly converges to a solution.

Corollary 3.1.The average number of iterations necessary to obtain a solution
with a con�dence at least equal to 1� Æ is given by

n >
ln(Æ)

ln(1� �)
; with 0 < � 6

2A(D \ D�)Pf�(A+BKC) � C�g

�
h
max
K

�(A+BKC)
i2 (6)

Where C� is the left half plane (C is the set of complex numbers), Pf�(A +
BKC) � C�g is the probability that A+BKC is Hurwitz (i.e. a stable matrix),
�(M) is the spectral radius of the matrix M , that is �(M) = max(j�ij), with
�i the eigenvalues of M . The quantity A(D \ D�) is the surface of the domain
D \ D�, where D is the speci�ed region for pole placement and D� is the half
region generated by the maximum over K of the spectral radius (see �gure 1).

0

�e

�m

A (D �D�)

maxK �(A+BKC)

Domain D

Domain D�

l

Fig. 1 � Surface of the region D \D�.

Proof. From (5) we want to have (1� �)n 6 Æ which gives n > ln(Æ)= ln(1� �).
Suppose now that �(Ac) � C

�, with Ac = A+BKC, the probability thatK 2 K
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is equal to the probability that �(Ac) � D. Consider n random trials generating
n independent identically distributed matrices K. If n goes to in�nity, the ratio
between the number of successes ns and the number of trials n, is equal, by
de�nition, to the probability Pf�(Ac) � D=�(Ac) � C

�g. This probability is
bounded by the ratio between the surface A(D \ D�), where D is the speci�ed
region for pole placement and D� is the half region (by assumption �(Ac) � C

�)
generated by the maximum over K of the spectral radius:

Pf�(Ac) � D=�(Ac) � C
�g = lim

n!1

ns
n
6

2A(D \ D�)

��2max

(7)

With �max = maxK �(Ac). The probability of elementary success � is given
by � = Pf(�(Ac) � C

�) \ (�(Ac) � D)g, by the conditional probability we
have Pf�(Ac) � D=�(Ac) � C

�g = �=Pf�(Ac) � C
�g, which gives � 6

2A(D \D�)Pf�(Ac) � C
�g=(��2max).

Remark 3.1. The probability � can be estimated as relative frequency �̂N =
Ns=N , where N is the total number of samples and Ns the number of samples
such that �(A+BKC) � D. The problem is to determine the number of samples
N in order to obtain a reliable probabilistic estimate. More precisely, given the
accuracy � 2 [0; 1] and the con�dence Æ 2 [0; 1], the minimum of samples N

which guarantees that Pfj� � �̂N j 6 �g > 1� Æ is given by the Cherno� bound
(Cherno�, 1952) N > ln(2=Æ)=(2�2). Thus, the probability � can be estimated
using the following algorithm.

1. Choose a number of iterations N such that N > ln(2=Æ)=(2�2).

2. Generate a m� p matrix K with random uniformly distributed elements
kij on the intervals [kij ;

�kij ] 8i;j

3. If �(A +BKC) � D then Ns = Ns + 1

4. If the number of iterations is incomplete go to step 2, otherwise stop.

The estimation of the probability � is then given by Ns=N . One question arises,
the feasibility problem. The feasibility of pole placement by constrained output
feedback is related to the spectral radius of the closed-loop state matrix. Indeed,
let l be the minimal distance between the origin of the complex plane and the
domain D of the pole placement (see �gure 1). If maxK �(A + BKC) < l, the
problem is not feasible. Note that the probability Pf(�(Ac) � C

�)g as well as
maxK �(A + BKC) can be estimated using the same approach as described in
the above algorithm.

4 Robustness issue

In this section, our objective is to �nd an output feedback controller such
that the closed-loop system remains stable for a large variety of plants. For this
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purpose, we consider the problem of minimal sensitivity (i.e. maximal robust-
ness) of eigenvalues to unstructured perturbation in the system and controller
parameters. An analytic solution to the problem of minimal sensitivity in static
output feedback design was �rst given in Bavafa-Toosi and Khaki-Sedigh (2002).
However, as mentioned in the above paper, the minimum achievable condition
number has a lower bound (see also Kautski & al. (1985)), the problem may
not have a solution. Therefore, the condition number minimization approach
is usually adopted. More precisely, if an additive uncertainty � exists in the
closed-loop system matrix, according to theorem 6 in Kautsky & al. (1985), the
closed-loop state matrix A+�+BKC is Hurwitz if

k�k2 < min
i

Re(��i)=�2(T ) (8)

where k�k2 is the 2-norm or spectral norm of �, �i (i = 1;2 : : : ;n) are ei-
genvalues of A + BKC, �2(T ) is the spectral condition number of T , that is
�2(T ) = kTk2kT

�1k2, and T is the eigenvector matrix of A + BKC. From in-
equality (8) one can see that a smaller �2(T ) gives a largest bound of k�k2 and
thus increases the set of plants which can be stabilized. Hence the robustness of
the closed loop system can be improved by solving the following optimization
problem

minimize J = kTk2kT
�1k2

subject to K 2 K
(9)

A sub-optimal solution of this optimization problem can be found using the
theorem 4.1. Let us start with lemma 4.1.

Lemma 4.1. There exists an optimal level of performance min > 1 such that:

9K� 2 K; J(K�) = min 6 J(K); 8K 2 K (10)

There exists a bound of performance level max such that:

8K 2 K; J(K) 6 max (11)

For all levels of performance min <  < max there exists a nonempty set of
solutions K de�ned by:

K = fK 2 K : J(K) 6 g (12)

Theorem 4.1. For a given level of performance  with min <  < max, the
random optimization algorithm

1. Select an initial output feedback matrix K 2 K, and a domain of explora-
tion [�d; d], d > 0.

2. Generate a m�p matrix �K with random uniformly distributed elements
�kij on the interval [�d; d] 8i;j, such that K +�K 2 K.

3. If J(K +�K) < J(K) let K = K +�K.
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4. If J(K) > , go to step 2, otherwise stop.

converges certainly to a solution K 2 K .

Proof. Consider an initial matrix K 2 K for which J(K) > . By lemma 4.1
there exists �K, with K+�K 2 K, such that J(K+�K) < J(K). Consider n
iterations of the algorithm, the probability that J(K+�K) > J(K) is given by
(1� �)n (see the proof of theorem 3.1), where � > 0 is the probablity of success
that is PrfJ(K + �K) < J(K)g. It is clear that limn!1(1 � �)n = 0, then
repeating the steps 2-3-4 we �nally �nd �K such that J(K + �K) < J(K).
If J(K + �K) 6  then K + �K 2 K , if not, we consider K + �K as a
new initial matrix and repeating the reasoning above we see that the algorithm
converges to an element of K which is a suboptimal solution. Obviously, the
optimal solution is given by the smallest level of performance min which is
unknown.

More generally, an analogue approach can be used to minimize a given cost
function re�ecting the performance of the controller for a given set of plants
(see example 3 below).

5 Simulation results

In this section various numerical examples are presented to illustrate the
validity of the proposed approach.

Example 1. Consider a 4-state, 2-input, 3-output aircraft example (Yan, Teo
and Moore, 1994) given by

A =

2
664
�0:037 0:0123 0:00055 �1:0

0 0 1:0 0
�6:37 0 �0:23 0:0618
1:25 0 0:016 �0:0457

3
775

B =

2
664

0:00084 0:000236
0 0

0:08 0:804
�0:0862 �0:0665

3
775 ; C =

2
4 0 1 0 0

0 0 1 0
0 0 0 1

3
5

(13)

with its open loop poles at �0:0105, �0:2009, �0:0507 � 1:1168j. We want
to �nd an output feedback controller K, with jkij j 6 10 8i;j, such that the
closed-loop poles are in the region de�ned by D = f� + j� : �2:5 6 � 6

�0:3; � 1:5 6 � 6 �1:5g. Using the algorithm given in remark 1, we obtain
� = 0:003, and the average number of iterations necessary to �nd a solution
with a con�dence 1�Æ = 0:995, is 1763. The upper bound given in corollary 3.1
can be evaluated as follows. Using the same principle given in remark 3.1, the
estimation of Pf�(Ac) � C

�g and maxK �(Ac) are given by 0:086 and 10:64
respectively. We have A(D\D�) = (2:5�0:3)�3 = 6:6. The upper bound of the
probability � is then � 6 0:0032. Table 1 summarizes various experimentations,
where n is the number of iterations and �2 the spectral condition number.
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n Matrix gain and closed-loop poles �2

688
K =

�
0:2327 7:8452 3:5994
�8:4385 �6:6849 5:4134

�

� = f�2:3981 � 1:3954j; � 0:4670 � 0:6628jg
12.5683

1621
K =

�
7:7624 8:0917 4:0072
�8:8633 �6:9531 4:4514

�

� = f�0:4981 � 1:0898j; � 2:4505 � 0:3201jg
46.7701

403
K =

�
0:9900 2:1420 6:5898
�1:0529 �3:3637 2:7482

�

� = f�2:4673; � 0:3668 � 0:9934j; � 0:3957g
8.0678

175
K =

�
0:8021 3:6025 3:5335
�7:7666 �6:0396 3:0155

�

� = f�2:3630 � 0:6832j; � 0:3297 � 0:8411jg
19.8294

1501
K =

�
�0:5261 0:2432 7:2889
�3:4500 �2:6392 �0:9264

�

� = f�1:1096 � 1:4612j; � 0:3813 � 0:6400jg
8.6107

Tab. 1. Experiment results.

For the best result, using the random optimization algorithm (with d =
0:025), we obtain the following matrix gain and spectral condition number.

n Matrix gain and closed-loop poles �2

75910
K =

�
1:5474 7:7891 8:5192
�1:6813 �3:7358 �0:4161

�

� = f�2:4994; � 0:3000 � 1:4976j; � 0:3004g
5.2715

Tab. 2. Optimization result.

Example 2. Consider a 5-state, 3-input, 3-output pilot plant evaporator model
(Ho & al., 1999) given by

A =

2
66664

0 0 �0:0034 0 0
0 �0:0410 0:0013 0 0
0 0 �1:1471 0 0
0 0 �0:0036 0 0
0 0:0940 0:0057 0 �0:0510

3
77775

B =

2
66664
�1:0000 0 0

0 0 0
0 0 0:9480

0:9160 �1:0000 0
�0:5980 0 0

3
77775 ; C =

2
4 0 0 0 0 1

1 0 0 0 0
0 0 0 1 0

3
5

(14)

with its open loop poles at 0, 0, �0:041, �0:051, and �1:1471. We want to
�nd an output feedback controller K, with jkij j 6 5 8i;j, such that the closed-
loop poles are in the region de�ned by D = f� + j� : �1:2 6 � 6 �0:04; �
0:5 6 � 6 0:5g. Using the algorithm given in remark 1, we obtain � = 5:13�
10�4, and the average number of iterations necessary to �nd a solution with a
con�dence 1�Æ = 0:995, is 10333. The upper bound given in corollary 3.1 can be
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evaluated as follows. Using the same principle given in remark 3.1, the estimation
of Pf�(Ac) � C

�g and maxK �(Ac) are given by 0:19 and 15:43 respectively.
We haveA(D\D�) = (1:2�0:04)�1 = 1:16. The upper bound of the probability
� is then � 6 6:3� 10�4. Table 3 summarizes various experimentations, where
n is the number of iterations and �2 the spectral condition number.

n Matrix gain and closed-loop poles �2

646
K =

2
4 �2:8917 2:2234 0:0715
�4:5221 0:1325 0:6331
�1:6834 2:6855 �2:6968

3
5

� = f�0:9769 � 0:3738j; � 0:1467 � 0:4553j; � 0:0537g

167.4183

6434
K =

2
4 2:7175 �1:7948 �0:2750
�1:7312 4:5429 1:1175
�0:8666 1:5499 �3:2881

3
5

� = f�0:3659 � 0:4066j; � 0:0661; � 0:6076; � 1:0333g

677.7658

3857
K =

2
4 0:0123 0:9414 0:4097

0:2420 0:0000 0:3112
0:6813 0:3795 0:8318

3
5

� = f�1:1476; � 0:4345 � 0:1868j; � 0:0669; � 0:0403g

18.8613

10084
K =

2
4 �2:8561 1:7753 0:2511
�4:2172 1:5954 1:5051
�3:3913 0:2017 �0:4808

3
5

� = f�1:1092 � 0:0535j; � 0:1583 � 0:3618j; � 0:0466g

62.7497

5458
K =

2
4 �0:0125 0:1543 0:6328

0:2996 �0:3410 0:7724
�4:0131 �1:6788 0:0397

3
5

� = f�1:1353; � 0:1324 + 0:4316j; � 0:1272; � 0:0513g

38.0574

Tab. 3. Experiment results.

For the best result �2 = 18:86, using the random optimization algorithm
(with d = 0:025), we obtain the following matrix gain and spectral condition
number.

n Matrix gain and closed-loop poles �2

6288
K =

2
4 �0:0135 0:0374 0:0870

0:1409 �0:0761 0:3669
�0:2131 �0:1487 1:1119

3
5

� = f�1:1435; � 0:2865; � 0:0422� 0:0474j; � 0:0414g

6.9855

Tab. 4. Optimization result.

This spectral condition number is better than that obtained in Ho & al.,
1999 which have �2 = 9:5.

Example 3. This example concerns the design of an output dynamic feedback
controller K(s;p) for the longitudinal axis of an aircraft modelled by G(s;�),
where � is the system parameters and p the controller parameters. The closed
loop system is shown in �gure 1, for more details see Viadyasagar (1998). The
problem is to minimize the weighted sensitivity function over a set of uncertain
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G(s,�)
y+

-
K(s,p)

H(s)

Fig. 2 � Block diagram of the closed-loop system.

plants, given some constraints on the nominal system. The system G(s;�) is
given in the following state space form

A =

�
Z� 1� Zq
M� Mq

�
; B =

�
ZÆe
MÆe

�
; C =

�
1 0
0 1

�
(15)

The system parameters � = [Z� Zq M� Mq ZÆe MÆe]
T have gaussian distribu-

tion with means and standard deviations as in table 5.

Parameter Mean (�0) Standard deviation (�)
Z� -0.9381 0.0736
Zq 0.0424 0.0035
M� 1.6630 0.1385
Mq -0.8120 0.0676
ZÆe -0.3765 0.0314
MÆe -10.8791 3.4695
Tab. 5. Parameters of the aircraft model.

The transfer function H(s) models the di�erent hardware components, such
as the sensor, the actuators, etc. It is given by

H(s) =
0:000697s2� 0:0397s+ 1

0:000867s2+ 0:0591s+ 1
(16)

The output dynamic feedback controllers have the following structure :

K(s;p) =

�
�Ka �Kq

1 + s�1
1 + s�2

�
(17)

The controller parameters p = [Ka Kq �1 �2]
T have uniform distributions in the

ranges

Ka 2 [0; 2]; Kq 2 [0; 1]; �1 2 [0:01; 0:1]; �1 2 [0:01; 0:1] (18)

The objective is to �nd the controller parameters which solve the following
problem

min
W (I +GHK)�1


1
; such that

 0:75KG0H

1 + 1:25KG0H


1

6 1 (19)
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where G0(s) denote the nominal system, and W (s) is the weighting function
given by

W (s) =

"
2:8�6:28�31:4

(s+6:28)(s+31:4) 0

0 2:8�6:28�3:14
(s+6:28)(s+31:4)

#
(20)

In order to solve this problem, consider the following cost function:

J(�0;p) =

8<
:

1; if the pair (G0;K) is unstable, or
 0:75KG0H
1+1:25KG0H


1
> 1

kW (I+G0HK)�1k
1

1+kW (I+G0HK)�1k
1

; otherwise
(21)

For a given level of nominal performance 0 < 1, a sub-optimal controller can
be found using the following random search algorithm

1. Select a nominal level of performance 0 < 1.

2. Generate a controller parameters p with random uniformly distributed ele-
ments on the intervals de�ned in (18).

3. If J(�0;p) > 0 go to step 2, otherwise stop.

The proof of convergence of this algorithm is similar to that of theorem 3.1.
Thus we �nd controller parameters p0 such that J(�0;p) 6 0. For this control-
ler, it is crucial to verify that the worst case performance is such that wc(p0) =
sup�2� J(�;p0) < 1, where � is the set of more representative system parame-
ters. For instance, for a gaussian distribution, one can choose � = [�0�3�; �0+
3�], where �0 is the mean and � the standard deviation. If there exists � 2 �
such that wc(p0) = 1, the controller must be rejected because we want at least
stability in the worst situation. The worst case performance wc(p0) can be es-
timated using ŵc(p0) = sup�i J(�i;p0), where �i 2 � with i = 1; : : : ;N are N
i.i.d samples generated according to the probability measure P� on the set �.
The number of samples necessary to have PfPfwc > ŵcg 6 �g > 1 � Æ, for a

given � 2 [0; 1] and Æ 2 [0; 1], is such that N >
ln(1=Æ)

ln(1=(1��)) (see Tempo, Bai and

Dabbene 1997). In the same way, one can compute the average performance

�JN (�;p0) =
1

N

NX
i=1

J(�i;p0) (22)

which re�ects the performance of the controller most often obtained for a gi-
ven set of plants. Obviously, the optimal controller is obtained for the smallest
possible �J(�;p0) which is unknown but it can be approached iteratively. Table
6 summarizes successive experiments where 0 is the speci�ed level of nominal
performance and n the number of iterations.

0 J(�0;p) Controller parameters n

0.9000 0.8013 Ka = 0:6124, Kq = 0:1122, �1 = 0:0499, �2 = 0:0520 2

0.8000 0.7329 Ka = 0:8874, Kq = 0:5925, �1 = 0:0673, �2 = 0:0579 5

0.7300 0.7204 Ka = 0:7223, Kq = 0:6570, �1 = 0:0599, �2 = 0:0450 16

0.7200 0.7170 Ka = 0:9046, Kq = 0:6471, �1 = 0:0835, �2 = 0:0718 46

0.7150 0.7100 Ka = 1:9004, Kq = 0:7735, �1 = 0:0417, �2 = 0:0107 629
Tab. 6. Experiment results.
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For the best result J(�0;p) = 0:7100, �gure 3 shows the response of the system
from the initials conditions y1 = 1, y2 = 1 for various � 2 �.
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Fig. 3 � Simulation results for various plant parameters.

For this best result J(�0;p) = 0:7100, the worst case performance evaluated
for 70,000 plants is ŵc = 0:7549 and the average performance evaluated for the
same number of plants is �J70000(�;p0) = 0:7117. This result is better than that
obtained in Kolchinskii (2001) which obtain �J66848(�;p0) = 0:7149. In fact, for
� = 0:005 and Æ = 0:005, only N = 1057 plants are needed to evaluate the
worst case performance and the average performance. This also is a good result
compared with N = 66;848 (Kolchinskii 2001).

6 Conclusion

In this paper a simple but e�ective method to �nd a robust output feedback
controller via a random search algorithm was presented. The output feedback
controller can be static (see examples 1 and 2) or dynamic (see example 3). The
robustness of the closed-loop system is improved by the minimization of a cost
function such as spectral condition number, H2 or H1 norms of a weighted
sensitivity function and so on, re�ecting the performance of a �xed controller
for a variety of plants. Three examples are presented, which demonstrate the
e�ectiveness of the proposed approach. Comparisons with the work of other
authors show that the obtained results are satisfactory.
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The drawback of the proposed method is that the probability that the al-
gorithm fails is not equal to zero for a �nite number of iterations, but can be
made arbitrarily small as the number of iterations increases.
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