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Abstract. This paper presents a simple but effective tuning strategy for robust static output
feedback (SOF) controllers with minimal quadratic cost in the context of multiple parametric
uncertainties. Finding this type of controller is known to be computationally intractable using
conventional techniques. This is mainly due to the non-convexity of the resulting control problem,
which has a fixed structure. To solve this kind of control problem easily and directly, without
using any complicated mathematical manipulations, we utilize Kharitonov’s theorem and an evo-
lutionary algorithm (EA) for the resolution of the underlying constrained optimization problem.
Using Kharitonov’s theorem, a family of bounded, robustly stable static output feedback con-
trollers can be defined and EA is used to select the controller that ensures a minimal quadratic
cost within this family. The resulting tuning strategy is applicable to both stable and unstable
systems, without any limitations on the order of the process to be controlled. A numerical study
was conducted to demonstrate the validity of the proposed tuning procedure.
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1 Introduction

In the category of non-convex problems, one important issue in control theory is the optimal

synthesis of a static output feedback controller (SOF) [18, 9, 17]. Indeed, SOF controller

synthesis leads to a bilinear matrix inequalities (BMI) optimization problem, which is non-

convex and NP-hard to solve. However, a variety of iterative schemes to solve this type of

problem have been proposed. One well-known scheme is to alternate between analysis and

synthesis via linear matrix inequalities (LMI) that often results in acceptable local solutions

[10, 4]. Global approaches have been also proposed to solve the BMI optimization problem

[2, 11]. However these are very hard to use for a non-specialist, who often is looking for

the easiest way to find a global solution to the problem. Further, these LMI/BMI based
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approaches involve the resolution of an optimization problem whose decision variables

are Lyapunov variables [1]. The disadvantage of these approaches is that the number

of Lyapunov variables grow quadratically with system size. Therefore, these approaches

artificially introduce a large number of extra variables, whereas it is the parameters of

the controller that are being sought and the controller contains a comparatively small

number of unknowns. Consequently, new techniques would be useful for dealing with the

non-convexity of SOF controller synthesis without introducing extra unknown variables.

In the context of multiple parametric uncertainties, the problem of designing a SOF

controller has become much more difficult because the controller must stabilize a family

of plants. In this framework, Kharitonov’s theorem provides a test for determining the

stability of a set of polynomials. This test is usually well-suited for analyzing the stability

robustness of a given feedback controller, but not for synthesizing robust controllers. The

few available results that exploit Kharitonov’s theorem for robust synthesis of controllers

are based on very restrictive models, for instance a single input single output (SISO)

transfer function or state space representations in companion form. In our approach,

Kharitonov’s theorem is used to define a family of robustly stable SOF controllers without

assuming any particular structure in the state space representation of the system. However,

the problem arises of selecting the best, in some sense, robust controller within this family.

This optimization problem can be solved by using the so-called evolutionary algorithms

(EA) [15, 6, 5, 20, 8, 19, 13, 16]. These algorithms have demonstrated a high ability to

solve non-convex optimization problems via simple stochastic strategies.

The main objective of this paper is to develop a simple and easy-to-use tuning strat-

egy for robust SOF controllers with minimal quadratic cost, in the context of multiple

parametric uncertainties. Finding this kind of controller is known to be computationally

intractable using conventional techniques. Therefore, to solve this design problem eas-

ily and directly, without using any complicated mathematical manipulations, we utilize

Kharitonov’s theorem in association with an evolutionary algorithm (EA) to resolve the
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underlying constrained optimization problem. Using Kharitonov’s theorem, a family of

bounded, robustly stable static output feedback controllers can be defined and EA is used

to select the controller which ensures a minimal quadratic cost within this family. Since

any EA can be used for this purpose, we did not limited our presentation to a particular

algorithm. The resulting tuning strategy is applicable to both stable and unstable systems,

without any limitation on the order of the process to be controlled. A numerical study was

conducted to demonstrate the validity of the proposed tuning procedure.

2 Problem formulation

Consider a multivariable linear time-invariant (LTI) dynamic system described by:⎧⎨
⎩ ẋ(t) = A(θ)x(t) + B(θ)u(t)

y(t) = C(θ)x(t)
, (1)

where x ∈ Rnx , u ∈ Rnu and y ∈ Rny represent the state, input, and output vectors, re-

spectively; A, B, and C are constant matrices, with appropriate dimensions, parametrized

by the system parameters θ ∈ Rnθ . As usual, it is assumed that rank[B] = nu and

rank[C] = ny. It is assumed that the system parameters θ (also called the parameter box)

are time-invariant and lie in a bounded set Θ defined as follows:

Θ =
{
θ ∈ Rnθ : θ �e θ �e θ̄

}
, (2)

where the notation �e, stands for an element-by-element inequality, and the vectors θ =

[θ1 · · · θnθ
]T , θ̄ = [θ̄1 · · · θ̄nθ

]T are the bounds of the system parameters θ. With this formu-

lation, the matrices A(θ), B(θ), and C(θ) are affected by parametric, possibly nonlinear,

uncertainties. The entries of these matrices are then functions of uncertain parameters,

which are bounded within intervals. In this paper, it is assumed that these entries get

their extreme values from the bounds of the uncertain parameters. We suppose that the

full state is not measurable and only a partial information through y(t) can be used for
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the control. Our main objective is to find a SOF controller that works satisfactorily for all

plants parametrized on Θ. For this purpose let us consider the SOF

u(t) = −Ky(t), (3)

where u ∈ Rm represents the control vector, y ∈ Rp is the measured vector, and K is

the constant output feedback gain. The consideration of the SOF case is not restrictive

because the dynamic output feedback case can be rephrased as a SOF control problem

involving an augmented plant. Applying the output feedback (3) to (1), the closed-loop

system is given by

ẋ(t) = (A(θ) − B(θ)KC(θ))x(t), y(t) = C(θ)x(t). (4)

The main objective is to solve the following optimization problem:

Kopt = arg min
K∈K

J(K, θ0), (5)

where J(K, θ0) is the quadratic cost of the closed-loop system for the controller K and

the nominal vector of parameters θ0. In this paper, θ0 represents the center of the box

parameters Θ. In other words, the set Θ can be seen as a box of uncertainty around the

nominal value θ0. In this optimization problem, K represents a family of bounded, robustly

stable SOF controllers, i.e. a family of controllers ensuring the stability of the closed-loop

system for all θ ∈ Θ. The resolution of (5) requires

• introducing a test that indicates if a given controller K belongs to K. This can be

done using Kahritonov’s theorem (see section 3.1).

• computing the quadratic cost J(K, θ0). This can be done by solving a Lyapunov

equation (see section 3.2).

• elaborating a strategy to minimize the cost J under the constraint that K ∈ K. This

step can be accomplished using an evolutionary algorithm.
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3 Robust synthesis of SOF controllers with minimal

quadratic cost

The various requirements presented above are considered in detail in the next sections.

First, we start with the problem of determining a family of bounded, robustly stable SOF

controllers.

3.1 Set of bounded, robustly stable SOF controllers

For practical reasons, it is useful to limit the search space to a set of bounded SOF con-

trollers KB, defined by

KB =
{
K ∈ Rny×nu : kij � [K]i,j � k̄ij ∀i, j

}
. (6)

The entries [K]i,j of the matrix K are then constrained to lie in some known interval

bounded by kij and k̄ij. An element K ∈ KB belongs to the set of robustly stable controllers

if the real part of the nx eigenvalues of the closed-loop state matrix Ac(K, θ) = A(θ) −
B(θ)KC(θ)) is negative for all θ ∈ Θ. The set of bounded, robustly stable SOF controllers

can then be defined as the set of controllers K ∈ KB such that maxθ∈Θ λ̄�(Ac(K, θ)) < 0,

where λ̄�(Ac(K, θ)) is the largest real part of the eigenvalues of Ac(K, θ). The diffi-

culty is that maxθ∈Θ λ̄�(Ac(K, θ)), cannot be evaluated because the analytic expression

of λ̄�(Ac(K, θ)) is unknown, except for small sized problems (say nx � 3). In addition,

as shown in the example presented figure 1, this function is generally non-convex and

nondifferentiable and thus no efficient deterministic algorithm exists for finding the global

maximum of λ̄�.

Under these conditions, we can check the robust stability by considering the extreme

systems. Let V(Ac(K, θ)) =
{
A1

c(K), · · · , Al
c(K)

}
be the set of l = 2m vertices of the

closed-loop matrix Ac(K, θ), i.e. the set of matrices obtained by considering the bounds

of the entries of Ac(K, θ), which are functions of the uncertain vector parameters θ (the
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Figure 1: Non-convexity and nondifferentiability of the function λ̄�.

numbers of these entries are denoted by m). In other words, if aij(K, θ) represents the

entry i, j of Ac(K, θ), the corresponding entries of the vertices matrices of Ac(K, θ) belong

to the set {
aij(K) = min

θ∈Θ
aij(K, θ), āij(K) = max

θ∈Θ
aij(K, θ)

}
. (7)

It is then well known that the system ẋ(t) = Ac(K, θ)x(t) is quadratically stable, i.e.

the gain matrix K is a quadratically stabilizing SOF controller for all θ ∈ Θ, if a symmetric

positive definite matrix P can be found that satisfies the following LMI [3]:

(
Ai

c(K)
)T

P + PAi
c(K) < 0, i = 1, · · · , 2m (8)

In fact, condition (8) implies that any matrix of the convex set

C =

{
Ac(K) =

l∑
i=1

αiA
i
c(K), αi � 0,

l∑
i=1

αi = 1

}
(9)

is Hurwitz. Since Ac(K, θ) ∈ C for all θ ∈ Θ, one can conclude that the satisfaction of

condition (8) implies that Ac(K, θ) is Hurwitz for all θ ∈ Θ. However, this condition is very

conservative because condition (8) remains valid for time-varying parameters, whereas we
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consider the case of uncertain linear time invariant (LTI) systems. Indeed, robust stability

to time-varying parameters is more demanding than robust stability to fixed, but uncertain

parameters. In addition, the number of LMI in (8) can be very large, even for a small

number of uncertain parameters. For instance, if all entries of a 4× 4 matrix are functions

of the uncertain parameters, 216 LMI must be solved. For all these reasons, the “extreme

matrices” approach does not seem to be the best way to check the robust stability in the

case of uncertain LTI systems with nonlinear dependence on uncertain parameters.

When the vector of uncertain parameters is time-invariant, Kharitonov’s theorem gives

a simple sufficient condition for robust stability2 [14].

The characteristic polynomial of the closed-loop system (4) is given by

ρ(s, K, θ) = det(sI − Ac(K, θ)) = snx + ρ1(K, θ)snx−1 + · · · + ρnx(K, θ), (10)

where the coefficients ρi(K, θ) (i = 1, · · · , nx) are generally nonlinear functions of the

elements of the feedback gain matrix K and the system parameters θ. The corresponding

interval polynomial is written as follows:

ρ̆(s, K) = snx + ρ̆1(K)snx−1 + · · · + ρ̆nx(K), (11)

where ρ̆i(K), i = 1, · · · , nx are the intervals of the coefficients defined by

ρ̆i(K) = [ρ
i
(K), ρ̄i(K)], with:

⎧⎨
⎩ ρ

i
(K) = minθ∈V(θ) ρi(K, θ)

ρ̄i(K) = maxθ∈V(θ) ρi(K, θ)
, (12)

where V(θ) is the set of 2nθ vertices of the parameter box Θ, defined as follows:

V(θ) =
{
ν = [ν1 · · ·νnθ

]T : νi ∈ {θi, θ̄i}
}

. (13)

Since the entries of the matrix Ac(K, θ) get their extreme values from the bounds of

the uncertain parameters, this is also the case for the coefficients of the characteristic

polynomial.

2When each component of the vector θ is included in only one coefficient of the characteristic polynomial

det(sI − Ac(K, θ)), Kharitonov’s theorem gives the necessary and sufficient condition for robust stability.

However, this decoupling condition is rarely verified in practical applications.
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Given Kharitonov’s theorem, an element K ∈ KB belongs to the set of robustly stable

SOF controllers if the four following polynomials are Hurwitz:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1(s, K) = ρ
nx

(K) + ρ
nx−1

(K)s + ρ̄nx−2(K)s2 + ρ̄nx−3(K)s3+

+ρ
nx−4

(K)s4 + ρ
nx−5

(K)s5 + · · ·
ρ2(s, K) = ρ

nx
(K) + ρ̄nx−1(K)s + ρ̄nx−2(K)s2 + ρ

nx−3
(K)s3+

+ρ
nx−4

(K)s4 + ρ̄nx−5(K)s5 + · · ·
ρ3(s, K) = ρ̄nx(K) + ρ

nx−1
(K)s + ρ

nx−2
(K)s2 + ρ̄nx−3(K)s3+

+ρ̄nx−4(K)s4 + ρ
nx−5

(K)s5 + · · ·
ρ4(s, K) = ρ̄nx(K) + ρ̄nx−1(K)s + ρ

nx−2
(K)s2 + ρ

nx−3
(K)s3+

+ρ̄nx−4(K)s4 + ρ̄nx−5(K)s5 + · · ·

(14)

Therefore, a family of bounded, robustly SOF controllers can be defined as follows:

K = {K ∈ KB : ρi(s, K) ∈ H, i = 1, · · · , 4}, (15)

where H is the set of Hurwitz polynomials. In the case of high-order system (say nx � 4),

the computation of the closed-loop characteristic polynomial can be inextricable. There-

fore, the functions ρi(K, θ), i = 1, · · · , nx are not available, it is then impossible to compute

the bounds ρ
i
(K) and ρ̄i(K) analytically. However, it is possible to evaluate these bounds

through an appropriate numerical procedure. For a given K ∈ KB and a given θ ∈ Θ, the

coefficients ρi(K, θ) of the closed-loop polynomial can be easily computed via the following

iterative scheme [7]:

ρi(K, θ) = −1
i
trace(Mi), i = 1, · · · , nx

Mi+1 = Ac(K, θ)(Mi + ρi(K, θ)I)

M1 = Ac(K, θ).

(16)

With this iterative procedure and using (12) we can then compute the bounds ρ
i
(K) and

ρ̄i(K), for i = 1, · · · , nx exactly.
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3.2 Selection of the SOF that minimizes the quadratic cost func-

tion

From a practical point of view, stability is necessary but often not sufficient. It is also

very important to obtain a satisfactory performance level which can be evaluated by the

mean of a given cost function. In the linear quadratic regulator problem studied here, the

performance index is the standard quadratic cost function

J(K) =

∫ ∞

0

[
x(t)T Qx(t) + u(t)T Ru(t)

]
dt (17)

evaluated for the nominal vector parameters θ0. It is thus necessary to find the robust SOF

controller which minimizes the nominal quadratic cost. The weighting factors Q and R are

assumed to be symmetric and definite positive matrices. For a given controller K ∈ K, the

corresponding quadratic cost must be determined. This can be evaluated by finding the

matrix PK that solves the following Lyapunov equation:

Ac(K, θ0)
T PK + PKAc(K, θ0) + C(θ0)

T KT RKC(θ0) + Q = 0. (18)

Supposing that PK satisfies (18) and considering the function V (x) = xT PKx, gives

V̇ (x) = xT (Ac(K, θ0)
T PK + PKAc(K, θ0))x

= −xT (C(θ0)
T KT RKC(θ0) + Q)x

(19)

Integrating the previous expression from t = 0 to ∞ and because Ac is Hurwitz, it can be

deduced that

J(K) =

∫ ∞

0

[
x(t)T Qx(t) + u(t)TRu(t)

]
dt = xT

0 PKx0, (20)

the quadratic cost is then given by xT
0 PKx0, where x0 is the initial condition. The depen-

dence of J(K) on the initial condition x0 can be removed by considering x0 as a zero-mean

random variable with variance-covariance matrix E[x0x
T
0 ] = I. Thus, the mean cost (20)

can be written as E[J(K)] = trace(PK).
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The problem is now to determine Kopt ∈ K, which minimizes E[J(K)]. This problem

can be formulated as follows:

Kopt = arg min
K∈K

trace (PK), (21)

where PK is the solution of (18). This optimization problem can be solved using any EA

according to the general procedure described hereafter.

Robust synthesis via EA (RSEA)

1. Select the desired number of individuals N of the population and let i = 1.

2. Generate a sample Ki ∈ KB according to a uniform probability distribution on KB.

3. If Ki /∈ K, go to step 2, otherwise i = i + 1 (the test Ki /∈ K is performed using the

procedure presented in section 3.1).

4. If i < N , go to step 2.

5. Compute the quadratic cost for each controller of the population (this is done by

computing trace (PKi
), i = 1, · · · , N , where PKi

is the solution of equation (18) with

K = Ki).

6. If the termination condition is satisfied, go to step 8 (the termination condition can

be, for instance, a defined number of iterations).

7. From the results obtained step 5, generate a new population of controllers (this can

be done using the usual operators of EA, i.e. selection, crossover and mutation

operators), go to step 5.

8. The solution is given by the best candidate of the population, stop.
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4 Numerical example

In this section, the practical applicability of the proposed design method is shown on the

following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0

0 θ1 θ2 θ3

θ4 0 θ5 −1

θ4θ6 θ7 θ5θ6 + θ8 θ9 − θ6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

x(t) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 −3.91

0.035 0

−2.53 0.31

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

u(t)

y(t) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎥⎦ x(t)

(22)

This system has nine unknown (but bounded) parameters which belong to following inter-

vals:

θ1 ∈ [−3.52, −2.34], θ2 ∈ [−5.7, −3.8], θ3 ∈ [0.62, 0.94]

θ4 ∈ [0.07, 0.1], θ5 ∈ [−0.13, −0.09], θ6 ∈ [0.08, 0.12]

θ7 ∈ [−0.05, −0.034], θ8 ∈ [2.1, 3.1], θ9 ∈ [−0.35, −0.23]

(23)

these intervals define a hyperbox in the parameter space. We consider the center of this

hyperbox as the nominal vector parameters:

θ0 =
θ + θ̄

2
= [−2.93 − 4.75 0.78 0.085 − 0.11 0.1 − 0.042 2.6 − 0.29]T . (24)

The robust synthesis procedure RSEA described section 3.2, was applied to solve the

optimization problem (21) with R = I2, Q = I4. The RSEA has also been implemented

using a conventional genetic algorithm (see, for instance, [12]). The following parameters

were used: number of generations 50, population size 50, roulette wheel selection, one

point crossover with probability of 0.7 and a probability of mutation 0.07. The following

controller was obtained using the RSEA:

Kopt =

⎡
⎣ −0.3454 0.8515 −1.2319

−0.5861 0.8861 −0.1074

⎤
⎦ (25)

with a nominal quadratic cost J(Kopt, θ0) = 3.90.
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5 Conclusion

In this paper, the problem of robust synthesis of a SOF controller with minimal quadratic

cost was considered in the context of multiple parametric uncertainties. This problem is

known to be difficult to solve due to the non-convex nature of the underlying optimization

problem. To solve this problem in a straightforward manner, we proposed a new tuning

strategy that combines Kharitonov’s theorem with evolutionary algorithms. Kharitonov’s

theorem is used to define a family of bounded, robustly stable static output feedback

controllers without assuming any particular form of the model used to represent the system

to be controlled. Any evolutionary algorithm can then be used to select the controller that

ensures a minimal quadratic cost within this family. A numerical example demonstrated

the practical applicability of the proposed design method.
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