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Université de Lyon
Laboratoire de Tribologie et de Dynamique des Systèmes CNRS UMR5513 ECL/ENISE
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Abstract. In this work a new optimization method, called the heuristic Kalman algorithm
(HKA), is presented. This new algorithm is proposed as an alternative approach for solving con-
tinuous, non-convex optimization problems. The principle of HKA is to explicitly consider the
optimization problem as a measurement process designed to give an estimate of the optimum. A
specific procedure, based on the Kalman estimator, was developed to improve the quality of the
estimate obtained through the measurement process. The main advantage of HKA, compared
to other metaheuristics, lies in the small number of parameters that need to be set by the user.
Further, it is shown that HKA converges almost surely to a near-optimal solution. The efficiency
of HKA was evaluated in detail using several non-convex test problems, both in the unconstrained
and constrained cases. The results were then compared to those obtained via other metaheuris-
tics. The numerical experiments show that HKA is a promising approach for solving non-convex
optimization problems, particularly in terms of computation time and success ratio.
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1 Introduction

In all areas of engineering, physical and social sciences, problems involving the optimization

of some objective function are encountered. Usually, the problem that needs to be solved

can be formulated precisely, but is often difficult or impossible to solve either analytically

or through conventional numerical procedures. This is the case when the problem is non-

convex and thus inherently nonlinear and multimodal. In fact, it is now well-established

that the convexity of optimization problems determines whether they can be efficiently

solved or not [24]. Today, very efficient algorithms for solving convex problems exist [2],

but the problem of non-convex optimization remains largely open, despite an enormous

amount of effort that has been devoted to its resolution.
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Evolutionary approaches as well as other-population based methods handle non-convex

optimization problems well [18, 10, 9, 29, 11, 28, 14, 19]. This is the reason behind the suc-

cess and the broad diffusion of evolutionary optimization methods such as the well-known

genetic algorithm (GA) [16, 13]. The main characteristic of these kinds of approaches,

also called metaheuristics, is the use of a stochastic mechanism to find a solution. From a

general point of view, the use of a stochastic search procedure appears essential for finding

a promising solution.

Following this kind of approach, we propose a new optimization method, called the

heuristic Kalman algorithm (HKA). Our approach falls in the category of the so-called

“population-based stochastic optimization techniques”. However, its search heuristic is

entirely different from other known stochastic algorithms. Indeed, HKA explicitly considers

the optimization problem as a measurement process designed to give an estimate of the

optimum. A specific procedure, based on the Kalman estimator, was developed to improve

the quality of the estimate obtained through the measurement process. The main advantage

of HKA compared to other metaheuristics, lies in the small number of parameters that need

to be set by the user (only three). This property makes the algorithm easy to use for non-

specialists.

The efficiency of HKA was evaluated in detail using several non-convex test problems,

both in unconstrained and constrained cases. The results were then compared to those

obtained via other metaheuristics. The numerical experiments show that the HKA has

promising potential for solving non-convex optimization problems, notably in terms of the

computation time and success ratio.

The paper is organized as follows. In section 2, HKA is presented and its convergence

properties are given. In Section 3, various numerical experiments are conducted to evaluate

the efficiency of HKA in solving non-convex optimization problems. Finally, section 4

concludes the paper.
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2 The heuristic Kalman algorithm (HKA)

Consider the general system presented in figure 1, which produces an output in response

to a given input. In addition, this system has some tuning parameters that can modify

its behavior. By behavior, we mean the relationship existing between the inputs and the

outputs.

Inputs Outputs
System

Tuning parameters q

Figure 1: An optimization problem.

The problem is how to tune these parameters so that the system behaves well. Usually,

the desired behavior can be formulated via an objective function that depends on the

tuning parameters J(q), which needs to be maximized or minimized with respect to q.

More formally, the problem to be solved can be formulated as follows: find the optimal

tuning parameters qopt, solution of the following problem:⎧⎪⎨
⎪⎩

qopt = arg min
q∈D

J(q)

D = {q : gi(q) � 0, i = 1, · · · , nq}
(1)

where J : Rnq → R is a function for which the minimum ensures that the system behaves

as desired and gi are some constraints on the parameters q. The objective is to find the

tuning vector of parameters qopt that belong to the set of admissible solutions D that

minimize the cost function J . Unfortunately, there are several obstacles in solving this

kind of problem. The main obstacle is that most optimization problems are NP-hard [12].

Therefore, the known theoretical methods cannot be applied except possibly for some small

sized problems. Another difficulty is that the cost function may be not differentiable and/or

multimodal. Therefore, methods that require derivatives of the cost function cannot be
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used. Another obstacle is when the cost function cannot be expressed in an analytic form;

in this case, the cost function can be only evaluated through simulations.

In these situations, heuristic approaches seem to be the only way to solve optimization

problems. By a heuristic approach, we mean a computational method employing experi-

mentations, evaluations and trial-and-error procedures to obtain an approximate solution

for computationally difficult problems. This type of approach was used to develop HKA

and is described in the next section.

2.1 Principle of the algorithm

The main idea of HKA is to generate, via experiments (measurements), a new point which

is hopefully closer to the optimum than the preceding point. This process of estimation

is repeated until no further improvements can be made. More precisely, we adopt the

principle depicted in figure 2. The proposed procedure is iterative, and we denote by k

the kth iteration of the algorithm. We have a random generator of a probability density

function (pdf) f(q), which produces, at each iteration, a collection of N vectors that are

distributed around a given mean vector mk with a given variance-covariance matrix Σk.

This collection can be written as follows:

q(k) =
{
q1
k, q2

k, · · · , qN
k

}
, (2)

where qi
k is the ith vector generated at iteration k: qi

k = [qi
1,k · · · qi

n,k]
T , and qi

l,k is the lth

component of qi
k (l = 1, · · · , n). This random generator is applied to the cost function J .

Without loss of generality, we assume that the vectors are ordered by their increasing cost

function, i.e.

J(q1
k) < J(q2

k) < · · · < J(qN
k ). (3)

The principle of the algorithm is to modify the mean vector and the variance-covariance

matrix of the random generator until the minimum of the cost function is reached.
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Figure 2: Principle of the algorithm

More precisely, let Nξ be the number of best samples under consideration, such that

J(q
Nξ

k ) < J(qi
k) for all i > Nξ. Note that the best samples are those of sequence (2) which

have the smallest cost function. The objective is then to generate, from the best samples, a

new random distribution which approaches, on average, the minimum of the cost function

J with decreasing variance.

To this end, a measurement procedure followed by an optimal estimator of the pa-

rameters of the random generator is introduced. The measurement process consists in

computing the average of the candidates that are the most representative of the optimum.

For the kth iteration, the measurement, denoted ξk, is defined as follows:

ξk =
1

Nξ

Nξ∑
i=1

qi
k, (4)

where Nξ is the number of considered candidates. We can consider that this measurement

gives a perturbed knowledge about the optimum, i.e.

ξk = qopt + vk, (5)

where vk is an unknown disturbance, centered on qopt, and acting on the measurement

process. The components of vk are assumed to be independent and follow a centered normal

distribution. Since the covariance between two independent variables is zero, all non-

diagonal elements of variance-covariance matrix are zero. Thus, the variance-covariance

matrix of vk is given by:
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Vk =
1

Nξ

⎡
⎢⎢⎢⎣
∑Nξ

i=1(q
i
1,k − ξ1,k)

2 0

. . .

0
∑Nξ

i=1(q
i
n,k − ξn,k)

2

⎤
⎥⎥⎥⎦ . (6)

In other words, the diagonal of Vk (denoted vecd(Vk)) represents the variance vector. Note

that this variance vector can be used to measure our ignorance about qopt. In these con-

ditions, the Kalman filter can be used to make a so-called “a posteriori” estimate of the

optimum, i.e. it accounts for both the measurement and the confidence placed in it. As

seen, this confidence can be quantified by (6). Roughly speaking, a Kalman filter is an

optimal recursive data-processing algorithm [21]. Optimality must be understood as the

best estimate that can be made based on the model used for the measurement process as

well as the data used to compute this estimate.

Our objective is to design an optimal estimator which combines a prior estimation of

qopt and the measurement of ξk, so that the resulting posterior estimate is optimal in a

sense which will be defined below. In the Kalman framework, this kind of estimator takes

the following form:

q̂+
k = L′

kq̂
−
k + Lkξk, (7)

where q̂−k represents the prior estimation, i.e. before measurement, q̂+
k is the posterior

estimation i.e. after measurement, L′
k and Lk are unknown matrices which have to be

determined to ensure optimal estimation. Here optimality is reached when the expectation

of the posterior estimation error is zero and its variance is minimal. This can be expressed

as follows: ⎧⎪⎨
⎪⎩

(L′
k, Lk) = arg min

L′
k, Lk

E[q̃+T
k q̃+

k ]

E[q̃+
k ] = 0

, (8)

where E is the expectation operator and q̃+
k represents the posterior estimation error at
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iteration k. We define the posterior estimation error and its variance-covariance matrix as

q̃+
k = qopt − q̂+

k , P +
k = E[q̃+

k q̃+T
k ]. (9)

Similarly, we define the prior estimation error and its variance-covariance matrix as

q̃−k = qopt − q̂−k , P−
k = E[q̃−k q̃−T

k ]. (10)

Under the assumption that E[q̃−k ] = 0, it can be easily established that the satisfaction of

the condition E[q̃+
k ] = 0 requires

L′
k = I − Lk, (11)

where I is the identity matrix. Then, putting this expression into equation (7) gives:

q̂+
k = q̂−k + Lk(ξk − q̂−k ). (12)

The objective is now to determine Lk in such a way that the variance of the posterior

estimation error is minimized. Noting that trace(P +
k ) = E[q̃+T

k q̃+
k ], the minimization of the

variance of q+
k is accomplished by minimizing the trace of P +

k with respect to Lk. Standard

calculus, similar to the one used for the derivation of the Kalman filter, yields [21]

Lk = P−
k (P−

k + Vk)
−1, P +

k = (I − Lk)P
−
k . (13)

Finally, for the kth iteration, the HKA algorithm utilizes the relations (4), (6), (12),

(13) and the next iteration is initialized with mk = q+
k , Σk = P +

k and k = k + 1. Practical

considerations for efficient use of HKA are given in the next section.

2.2 Some practical considerations

The expression used for computing P +
k (see 13) generally leads to a decrease in the variance

of the Gaussian distribution that is too fast, which results in a premature convergence of

the algorithm. This difficulty can be tackled by introducing a slowdown factor in S+
k (the

posterior standard deviation vector of the Gaussian generator) and adjusting it according
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to the dispersion of the best candidates considered for the estimation of qopt. This can be

done as follows:

S+
k = S−

k + ak(Wk − S−
k ), with:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ak =
α min

(
1,
(

1
nq

∑nq
i=1

√
vi,k

)2
)

min

(
1,
(

1
nq

∑nq
i=1

√
vi,k

)2
)

+max1�i�nq (wi,k)

S−
k =

(
vecd(P−

k )
)1/2

, Wk =
(
vecd(P +

k )
)1/2

,

(14)

where S−
k and S+

k are, respectively, the prior and the posterior standard deviation vectors,

ak is the slowdown factor, α ∈ (0, 1] the slowdown coefficient, and vi,k represents the ith

component of the variance vector vecd(Vk) defined in (6), wi,k is the ith component of the

vector Wk, and vecd(.) is the diagonal vector of the matrix (.).

All the matrices used in our formulation (i.e. P +
k , P−

k , Lk, Σk) are diagonals. Conse-

quently, to save computation time, we must use a vectorial form for computing the various

quantities of interest. The vectorial form of (12) and (13) are given by

q̂+
k = q̂−k + vecd(Lk) � (ξk − q̂−k )

vecd(Lk) = vecd(P−
k )//(vecd(P−

k ) + vecd(Vk))

vecd(P +
k ) = vecd(P−

k ) − vecd(Lk) � vecd(P−
k ),

(15)

where the symbol � stands for a componentwise product and // represents a component-

wise divide. At each iteration k, HKA utilizes the relations (4), (6), (14), (15) and the next

iteration is initialized with mk = q+
k , Σk = diag(S+

k )2 and k = k + 1, where the notation

diag(.) represents a diagonal matrix with the vector (.) on the diagonal. The algorithm

used for the minimization of the objective function J(q) is presented hereafter.

Heuristic Kalman Algorithm

1. Initialization. Choose N , Nξ and α. Set k = 0, q̂−k = m0, P−
k = Σ0, mk = q̂−k , Σk = P−

k .

2. Random generator N (mk, Σk). Generate a sequence of N vectors q(k) =
{
q1
k, q2

k, · · · , qN
k

}
according to a Gaussian distribution parametrized by mk and Σk.
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3. Measurement process. Using relations (4) and (6), compute ξk and vecd(Vk).

4. Optimal estimation. Using relation (15), compute vecd(Lk), q̂+
k and vecd(P +

k ). Using

relation (14), compute S+
k .

5. Initialization of the next step. Set q̂−k = q̂+
k , P−

k = diag(S+
k )2, mk = q̂−k , Σk = P−

k ,

k = k + 1.

6. Termination test. If the Stopping rule (see paragraph 2.2.2) is not satisfied, go to

step 2, otherwise stop.

The practical implementation of this algorithm requires

• properly initializing the Gaussian distribution, i.e. m0 and Σ0.

• selecting the user-defined parameters, namely N , Nξ and α.

• introducing a stopping rule.

These various aspects are considered in sections 2.2.1 and 2.2.2.

2.2.1 Initialization and parameter settings

The initial parameters of the Gaussian generator are selected to cover the entire search

space. To this end, the following rule can be used:

m0 =

⎡
⎢⎢⎢⎣

µ1

...

µnq

⎤
⎥⎥⎥⎦ , Σ0 =

⎡
⎢⎢⎢⎣

σ2
1 · · · 0

...
. . .

...

0 · · · σ2
nq

⎤
⎥⎥⎥⎦ , with:

⎧⎪⎨
⎪⎩

µi =
x̄i + xi

2

σi =
x̄i − xi

6

, i = 1, . . . , nq, (16)

where x̄i (respectively, xi) is the ith upper bound (respectively, lower bound) of the hy-

perbox search domain. With this rule, 99% of the samples are generated in the interval

µi ± 3σi, i = 1, . . . , nx. The three following parameters must be set: the number of points
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N , the number of best candidates Nξ, and the coefficient α. To facilitate this task, Tab. 1

summarizes the influence of these parameters on the number of function evaluations (and

thus on the CPU time) and on the average error.

Table 1: Effect of HKA parameters (↗ : increase, ↘ : decrease).

Parameter N ↗ Nξ ↗ α ↗
Number of function evaluations ↗ ↗ ↘
Average error ↘ ↘ ↗

2.2.2 Stopping rule

The algorithm stops when a given number of iterations, MaxIter, is reached (MaxIter =

300 in all our experiments) or a given accuracy indicator is obtained. The latter accounts

for the dispersion of the Nξ best points. To this end, we consider that no significant

improvement can be made when the Nξ best points are in a ball of a given radius ρ (ρ =

0.005 in all our experiments). More precisely, the algorithm stops when max2�i�Nξ
||q1 −

qi||2 � ρ, where qi (i = 1, . . . , Nξ) are the Nξ best candidates.

In conclusion, the search procedure HKA is articulated around three main components,

the pdf function fk(q) (parametrized by mk and Σk), the measurement process, and the

Kalman estimator. Sampling from the pdf fk(q) at iteration k, creates a collection of vectors

q(k). This collection is then used by the measurement process to provide information on

the optimum. Via the Kalman estimator, this information is then combined with the pdf

fk(q) in order to produce a new pdf fk+1(q) which will be used in the next iteration. Since

the estimation process is carried out to minimize the variance of the posterior estimation

error, it follows that Σk tends toward zero after a sufficient number of iterations. The

resulting mk can then be considered as a reliable estimate of the optimum. More precisely,

an interesting property of this algorithm is its almost sure convergence to a near-optimal

solution. This property is established in the next section.
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2.3 Convergence properties

Let J(q) : Rnq → R and D ⊂ Rnq be the cost function and the set of admissible solutions,

respectively. A vector qopt ∈ Rnq is a global minimizer on D, if:

qopt ∈ D, and J(qopt) � J(q), ∀q ∈ D. (17)

By definition, a set of vectors q ∈ D that belong to a neighborhood of the global minimum

is a set of approximate solutions. Given ε > 0, the set of ε-approximate solutions of J(qopt)

is defined as:

E = {q ∈ D : |J(qopt) − J(q)| � ε} (18)

Thus any value Ĵopt = J(q) with q ∈ E is an estimate of the optimum J(qopt) with a

precision level ε, and every q ∈ E is a near-optimal solution.

In what follows, fk(q) represents the probability density function (pdf) of the random

generator at iteration k. We denote by η(k) = |q(k)∩ E| the cardinal number of the finite

discrete set q(k) ∩ E , i.e. the number of elements at iteration k. The proposition given

hereafter gives the sufficient conditions for convergence of HKA to a near-optimal solution.

Proposition. If the following two conditions are satisfied:

1. E is a convex set,

2. fk(q) > 0 for all q ∈ D and k > 0,

then the HKA converges almost surely to a near-optimal solution.

Proof. To show the almost sure convergence, it is sufficient to show that the probability

of drawing at least Nξ samples in E tends to unity as the number of iterations increases.

For iteration k, the probability of drawing at least Nξ samples in E is given by the binomial

law

Pr {η(k) � Nξ} = zk =

N∑
i=Nξ

N !

i!(N − i)!
pi

k(1 − pk)
N−i, (19)
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where pk is the probability that x ∈ D belongs to E . This probability is given by

pk =

∫
E
fk(q)dq. (20)

Condition 2 implies that pk > 0 for all k, and thus zk is also a non-zero probability for

all k. Therefore, a worst-case probability zwc exists, which can be defined as follows:

0 < zwc � zk ∀k. (21)

Since E is convex, Pr {η(k) � Nξ} is also the probability that ξk belongs to E . Consider

the sequence {ξbest
k } defined as

ξbest
k+1 = ξk+1 if J(ξk+1) < J(ξk)

ξbest
k+1 = ξbest

k if J(ξk+1) � J(ξk).
(22)

The almost sure convergence means that limk→∞ Pr
{
ξbest
k ∈ E} = 1. Then, we must show

that the sequence {ξbest
k } obtained by HKA converges with a probability of one to E . To

this end, consider the random variable yi, i = 2, · · · , k, defined as

yi = 1, if J(ξbest
i ) � J(ξbest

i−1 ) − ε

yi = 0, if J(ξbest
i ) > J(ξbest

i−1 ) − ε
(23)

In other words, yi = 1 means a success in our attempt to reduce the cost function J by

at least ε. Using the value of J for the initial measurement (i.e. ξ1), we introduce the

following variable:

Ns =

⌊
J(ξ1) − J(qopt)

ε

⌋
, (24)

where �v	 is the largest integer smaller than v. Therefore, a sufficient condition so that

ξbest
k belongs to E is

k∑
i=2

yi � Ns + 1. (25)

The probability Pr{ξbest
k /∈ E} is less than or equal to the probability that the number

of successful steps does not exceed Ns:

Pr{ξbest
k /∈ E} � Pr

{
k∑

i=2

yi � Ns

}
. (26)
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The latter probability increases with a decrease in the probability of successful steps.

From (21), we know that the probability of any successful step is greater than or equal to

the worst case probability zwc. Consequently, we can write:

Pr

{
k∑

i=2

yi � Ns

}
�

Ns∑
i=0

k!

i!(k − i)!
zi

wc(1 − zwc)
k−i, (27)

this latter expression can be upper-bounded as follows (see [20]):

Ns∑
i=0

k!

i!(k − i)!
zi

wc(1 − zwc)
k−i � Ns + 1

Ns!
kNs(1 − zwc)

k. (28)

Therefore, from (26), we have

Pr{ξbest
k /∈ E} � Ns + 1

Ns!
kNs(1 − zwc)

k. (29)

Since zwc > 0, it is clear that

lim
k→∞

kNs(1 − zwc)
k = 0, (30)

thus limk→∞ Pr{ξbest
k ∈ E} = 1. This shows the almost sure convergence of HKA.

3 Numerical experiments

In this section, the ability of the presented method to solve a wide range of non-convex

optimization problems is tested on various numerical examples, both in the unconstrained

and constrained cases. In all cases, our results were compared to those obtained via

other metaheuristics. We did not program the corresponding algorithms, but only used

the available published results. Details on these metaheuristics are given in the cited

literature. We considered the unconstrained and constrained cases separately, because

specific methods have been proposed to handle constraints (in particular the notion of

co-evolution or the introduction of an augmented Lagrangian). The same HKA algorithm

was used in both cases. The constraints were handled merely by introducing an augmented

cost function using penalty functions. The various experiments were performed using a 1.2

Ghz Celeron personal computer.
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3.1 Unconstrained case

HKA was compared to other metaheuristics such as ACOR, CGA, ECTS, ESA and IN-

TEROPT, which are listed in Tab. 2. The efficiency of HKA was tested using a set of

well-known test functions (RC, B2, DJ, S4,5, S4,7, S4,10, and H6,4), which are listed in the

Appendix. For these experiments, we performed each test 100 times and we compared

Table 2: List of the methods used in our comparisons.

Method Reference

Ant colony optimization for continuous domains (ACOR)

Continuous Genetic Algorithm (CGA)

Enhanced Continuous Tabu Search (ECTS)

Enhanced Simulated Annealing (ESA)

INTEROPT

K Socha and M. Dorigo [26]

R. Chelouah and P. Siarry [4]

R. Chelouah and P. Siarry [3]

P. Siarry and al. [25]

G. L. Bilbro and W.E. Snyder [1]

our results with those that have been previously published. In all these experiments, the

following parameters were used: number of points N = 25, number of best candidates

Nξ = 5, slowdown coefficient α = 0.9. The experimental results are presented in Tab.

3. For each test function, we give the success ratio for 100 runs and the corresponding

average number of function evaluations. It can be seen that some results are not available

for ECTS, ESA and INTEROPT (as indicated by the symbol “ - ” ). As shown in Tab. 3,

the best results were obtained for ACOR, CGA, and HKA. The number of evaluations

produced by HKA was slightly greater than those produced by CGA and ACOR, but its

success ratio was better. Tab. 4 presents the results on average error. These results were

Table 3: Comparison of HKA with ACOR, CGA, ECTS, ESA and INTEROPT.
Success Ratio (%) Average number of function evaluations

ACOR CGA ECTS ESA INTER

OPT
HKA ACOR CGA ECTS ESA INTER

OPT
HKA

RC 100 100 100 - 100 100 857 620 245 - 4172 625

B2 100 100 - - - 100 559 430 - - - 1275

DJ 100 100 - - - 100 392 750 - - - 600

S4,5 57 76 75 54 40 93 793 610 825 1137 3700 675

S4,7 79 83 80 54 60 92 748 680 910 1223 2426 686

S4,10 81 81 75 50 50 93 715 650 898 1189 3463 687

H6,4 100 100 100 100 100 97 722 976 1520 2638 17262 667

Mean

Values 89 92 86 65 70 97 684 674 880 1547 6205 745
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not available for ACOR and INTEROPT. Compared to CGA, ECTS and ESA, HKA led

to a lower average error.

Table 4: Average error.
Average Error

ACOR CGA ECTS ESA INTER

OPT
HKA

RC - 1.0e-4 5.0e-2 - - 5.0e-6

B2 - 3.0e-4 - - - 4.0e-5

DJ - 2.0e-4 3.0e-8 - - 2.0e-6

S4,5 - 1.4 e-1 1.0e-2 4.2e-3 - 2.0e-4

S4,7 - 1.2 e-1 1.0e-2 8.4e-3 - 8.0e-4

S4,10 - 1.5 e-1 1.0e-2 4.3e-2 - 5.0e-4

H6,4 - 4.0e-2 5.0e-2 5.9e-2 - 8.0e-3

Mean

Values - 6.4e-2 2.2e-2 2.9e-2 - 1.4e-3

3.2 Constrained case

HKA was compared to other metaheuristics specifically designed for solving constrained

problems. Two examples were considered, the welded beam design problem and the robust

PID design problem. In both experiments, HKA handled constraints via a new objective

function which includes penalty functions:

Jnew(x) = J(x) + w

Nc∑
i=1

max(gi(x), 0), (31)

where NC is the number of constraints, gi(x) is the ith inequality constraint of the form

gi(x) � 0, and w is a weighting factor, which was set to 100 in both experiments.

The welded beam design problem. A welded beam is designed for minimum cost

subject to constraints on shear stress τ(x), bending stress in the beam σ(x), buckling load

on the bar Pc, end deflection of the beam δ(x), and side constraints [15]. There are four

design variables as shown in Fig. 3: h (x1), l (x2), t (x3) and b (x4), x = [x1 x2 x3 x4]
T .
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Figure 3: Welded beam design problem.

The problem can be mathematically formulated as follows:

Minimize J(x) = (1 + c1)x
2
1x2 + c2x3x4(L + x2)

Subject to: g1(x) = τ(x) − τmax � 0

g2(x) = σ(x) − σmax � 0

g3(x) = x1 − x4 � 0

g4(x) = c1x1 + c2x3x4(L + x2) − 5 � 0

g5(x) = hmin − x1 � 0

g6(x) = δ(x) − δmax � 0

g7(x) = P − Pc(x) � 0

(32)

where

τ(x) =

√
τ 2
1 + 2τ1τ2

x2

2R
+ τ 2

2 , τ1 =
P√

2x1x2

, τ2 =
MR

I

M = P
(
L +

x2

2

)
, R =

√
x2

2

4
+

(
x1 + x3

2

)2

, I = 2

{√
2x1x2

[
x2

2

12
+

(
x1 + x3

2

)2
]}

σ(x) =
6PL

x4x2
3

, δ(x) =
4PL3

Ex2
3x4

, Pc(x) =
4.013E

√
x2

3x
6
4/36

L2

(
1 − x3

2L

√
E

4G

)

(33)
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and

c1 = 0.10471, c2 = 0.04811, P = 6 × 103, L = 14, E = 3 × 107

G = 1.2 × 107, hmin = 0.125, δmax = 0.25, τmax = 1.36 × 104, σmax = 3 × 104.

(34)

The ranges of design variables are

0.1 � x1 � 2, 0.1 � x2 � 10, 0.1 � x3 � 10, 0.1 � x4 � 2.

This problem has been solved using a genetic algorithm (GA) with binary representation

and a traditional penalty function [8]. It has also been solved using geometric programming

(GP) [23]. Recently, this problem was also solved using a GA-based co-evolution model

[5] as well as a multi-objective genetic algorithm (MGA) [6, 7]. Even more recently, this

problem was solved using a co-evolutionary particle swarm optimization (CPSO), with a

better solution than those previously obtained [15].

In this experiment, we performed the minimization problem 30 times and we compared

our results with those obtained via the methods listed in Tab. 5. The following parameters

were used: number of points N = 50, number of best candidates Nξ = 5, slowdown

coefficient α = 0.3.

Table 5: List of the methods used in our comparisons.

Method Reference

Geometric Programming (GP)

Genetic Algorithm and Penalty function (GAP)

Co-Evolutionnary Genetic Algorithm (CEGA)

Multi-objective Genetic Algorithm (MGA)

Co-evolutionary Particle Swarm Optimization (CPSO)

K.M. Ragsdell and D.T. Phillips [23]

K. Deb [8]

C.A.C. Coello [5, 6]

C.A.C. Coello and E.M. Montes [7]

Q. He and L.Wang [15]

The best solutions obtained by the above-mentioned approaches are listed in Tab. 6

and the statistical results are shown in Tab. 7.
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Table 6: Comparison of the best solution found using different methods.
GP GAP CEGA MGA CPSO HKA

x1 (h) 0.245500 0.248900 0.208800 0.205986 0.202369 0.205624

x2 (l) 6.196000 6.173000 3.420500 3.471328 3.544214 3.473825

x3 (t) 8.273000 8.178900 8.997500 9.020224 9.048210 9.038561

x4 (b) 0.245500 0.253300 0.210000 0.206480 0.205723 0.205738

g1(x) -5743.826517 -5758.603777 -0.337812 -0.074092 -12.839796 -5.621131

g2(x) -4.715097 -255.576901 -353.902604 -0.266227 -1.247467 -14.103308

g3(x) 0.000000 -0.004400 -0.001200 -0.000495 -0.001498 -0.000115

g4(x) -3.020289 -2.982866 -3.411865 -3.430043 -3.429347 -3.432290

g5(x) -0.120500 -0.123900 -0.083800 -0.080986 -0.079381 -0.080624

g6(x) -0.234208 -0.234160 -0.235649 -0.235514 -0.235536 -0.235550

g7(x) -3604.275002 -4465.270928 -363.232384 -58.666440 -11.681355 -1.595159

J(x) 2.385937 2.433116 1.748309 1.728226 1.728024 1.7255393

Table 7: Statistical results.
Method Best Mean Worst Std Dev Average number of

function evaluations

GP 2.385937 - - - -

GAP 2.433116 - - - -

CEGA 1.748309 1.771973 1.785835 0.011220 900000

MGA 1.728226 1.792654 1.993408 0.074713 80000

CPSO 1.728024 1.748831 1.782143 0.012926 200000

HKA 1.725539 1.725824 1.726287 0.000172 18600

As shown in Tab. 6, the best feasible solution found by HKA was better than the best

solutions found by other techniques. As shown in Tab. 7, the average searching quality of

HKA was also significantly better than those of other methods, and even the worst solution

found by HKA was better than the best solution found via CPSO method. In addition

the standard deviations of the results obtained by HKA were very small. Furthermore, the

number of function evaluations was significantly lower than those obtained by the other

methods.

Robust PID controller tuning. In a wide range of engineering applications, the problem

of designing a robust Proportional-Integral-Derivative (PID) controller remains an open

issue. This is mainly due to the fact that the underlying optimization problem is non-

convex and thus suffers from computational intractability and conservatism. To overcome
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these difficulties, Kim et al. [17] suggested solving this problem by augmented Lagrangian

Particle Swarm Optimization (ALPSO). Here we show that HKA is able to solve the

problem of designing a robust PID controller. The obtained results were then compared

to those of ALPSO. The problem can be mathematically formulated as follows

Minimize J(x) = arg max
λi(x)

{Re(λi(x)), ∀i}, x = [x1 x2 x3 x4]
T

Subject to: g1(x) = sup
ω�0

|[WS(s)]s=jω[S(s, x)]s=jω]| − 1 � 0

g2(x) = sup
ω�0

|[WT (s)]s=jω[T (s, x)]s=jω]| − 1 � 0

xi � xi � x̄i, i = 1, · · · , 4

(35)

where x = [x1 x2 x3 x4]
T is the vector of decision variables, xi and x̄i are the bounds

of the hyperbox search domain, s is the Laplace variable, ω is the frequency (rad/s),

j is the unit imaginary number, S(s, x) is the sensitivity function defined as S(s, x) =

1/(1+L(s, x)), T (s, x) is the closed-loop system defined as T (s, x) = L(s, x)/(1+L(s, x)),

L(s, x) is the open-loop transfer function defined as L(s, x) = P (s)K(s, x) where P (s) is

the transfer function of the system to be controlled, and K(s, x) the transfer function of

the PID controller

K(s, x) = 10x1

(
1 +

1

10x2s
+

10x3s

1 + 10(x3−x4)s

)
(36)

In the objective function, λi(x) denotes the ith pole of the closed-loop system. The

frequency-dependent weighting functions WS(s) and WT (s) are set so as to meet the per-

formance specifications of the closed-loop system.

As in [17], we solved this optimization problem for the magnetic levitation system

described in [27]. The process model is defined as

P (s) =
7.147

(s − 22.55)(s + 20.9)(s + 13.99)
. (37)

The frequency-dependent weighting functions WS(s) and WT (s) are respectively given as

WS(s) =
5

s + 0.1
, WT (s) =

43.867(s + 0.066)(s + 31.4)(s + 88)

(s + 104)2
. (38)
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The search space is

2 � x1 � 4, −1 � x2 � 1, −1 � x3 � 1, 1 � x4 � 3.

In this test, we performed minimization 30 times and we compared our results with

those presented in [17]. The following parameters were used: number of points N = 50,

number of best candidates Nξ = 5, slowdown coefficient α = 0.4.

The best solutions obtained via ALPSO and HKA are listed in Tab. 8 and the statis-

tical results are shown in Tab. 9 (the statistical results were not available for ALPSO).

Table 8: Comparison of the best solutions found via ALPSO and HKA.
ALPSO HKA

x1 3.2548 3.2542

x2 -0.8424 -0.8634

x3 -0.7501 -0.7493

x4 2.3137 2.3139

g1(x) 6.1e-3 -9.6e-4

g2(x) -4.0e-4 -1.2e-3

J(x) -1.7197 -1.7106

Table 9: Statistical results.
Method Best Mean Worst Std Dev CPU time Average number of

function evaluations

ALPSO -1.7197 - - - 687 s 25000

HKA -1.7106 -1.7023 -1.6891 0.0048 266 s 5427

The higher absolute value of the objective function obtained using ALPSO is due to the

violation of constraint g1(x); this is not the case for our solution in which all constraints

are satisfied. As shown in Tab. 9, HKA required a smaller number of function evaluations

and had a lower associated CPU time compared to ALPSO.
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If, as in ALPSO, a small violation of the constraint g1(x) is tolerated, we obtained the

results listed in Tab. 10 and Tab. 11.

Table 10: Comparison of the best solutions found via ALPSO and HKA.
ALPSO HKA

x1 3.2548 3.2556

x2 -0.8424 -0.8354

x3 -0.7501 -0.7539

x4 2.3137 2.3127

g1(x) 6.1e-3 4.9e-3

g2(x) -4.0e-4 -2.8e-3

J(x) -1.7197 -1.7435

Table 11: Statistical results.
Method Best Mean Worst Std Dev CPU time Average number of

function evaluations

ALPSO -1.7197 - - - 687 s 25000

HKA -1.7435 -1.7381 -1.7323 0.0030 248 s 5072

The best solution found by HKA was better than the solution found by ALPSO with, in

addition, a smaller violation constraint (Tab. 10). Tab. 11 shows that the worst solution

found by HKA was better than the solution found via ALPSO; in addition, HKA had

a smaller number of function evaluations (and thus a lower corresponding CPU time)

compared to ALPSO.

4 Conclusion

In this paper, a new optimization algorithm, called the heuristic Kalman algorithm (HKA),

was presented. The main characteristic of HKA is to explore the search space via a Gaussian

pdf. This exploration is directed by appropriately adjusting the pdf parameters so that

they converge to a near-optimal solution with low variance. To this end, a measurement

process followed by a Kalman estimator is introduced. The role of the Kalman estimator is

to combine the prior pdf function with the measurement process to give a new pdf function
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for the exploration of the search space. We demonstrated that under not too restrictive

conditions, the HKA algorithm converges “almost surely” to a near-optimal solution.

We tested the performance of HKA using several non-convex test problems, both in

the unconstrained and constrained cases. The results obtained show that HKA can be

considered as a good alternative for solving difficult non-convex problems quickly and with

a high probability of success.

Appendix

Test functions RC, B2, DJ, S4,5, S4,7, S4,10, and H6,4

• Branin’s function (RC) (2 variables)

J(x) =

(
x2 −

(
5.1

4π2

)
x2

1 +

(
5

π

)
x1 − 6

)2

+ 10

(
1 −

(
1

8π

))
cos(x1) + 10

search domain: −5 � xi � 10, i = 1, 2; 3 global minima: xopt = (−π, 12.275),
(π, 2.275), (9.42478, 2.475), J(xopt) = 0.397887.

• Bohachecsky’s function (B2) (2 variables)

J(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1) − 0.4 cos(4πx2) + 0.7;

search domain: −100 � xi � 100, i = 1, 2; global minimum: xopt = (0, 0),
J(xopt) = 0.

• De Jong’s function (DJ) (3 variables);J(x) = x2
1 + x2

2 + x2
3; search domain: −5 �

xi � 5, i = 1, 3; global minimum: xopt = (0, 0, 0), J(xopt) = 0.

• Shekel’s functions (S4,5, S4,7, S4,10) (4 variables); search domain: 0 � xi � 9,
i = 1, 4; 3 functions were considered S4,5, S4,7 and S4,10. For a complete definition of
these functions see [26].

• Hartmann’s functions (H6,4) (6 variables); search domain: 0 � xi � 1, i = 1, 6;
global minimum: J(xopt) = −3.322368. For a complete definition of this function,
see [26].
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