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ABSTRACT 
This paper aims at solving difficult optimization problems arising in many engineering areas. To 
this end, two recently developed optimization method will be introduced: the heuristic Kalman 
algorithms (HKA) and the quasi geometric programming (QGP) problems. The principle of HKA 
is to consider the optimization problem as a measurement process intended to give an estimate of 
the optimum. A specific procedure, based on the Kalman estimator, is developed to improve the 
quality of the estimate obtained through a measurement process. A significant advantage of HKA 
against other stochastic methods lies mainly in the small number of parameters which have to be 
set by the user. In this paper we also introduce an extension of standard geometric programming 
(GP) problems which we call quasi geometric programming (QGP) problems. The consideration 
of this particular kind of nonlinear and possibly non smooth optimization problem is motivated by 
the fact that many engineering problems can be formulated as a QGP. To solve this kind of 
problems (QGP), an algorithm is proposed which is based on the resolution of a succession of 
standard GP. An interesting feature of the proposed approach is that it does not need to develop 
specific program solver and works well with any existing solver able to solve conventional GP. In 
the last part of the paper, it is to shown that HKA and QGP can be efficiently used to solve 
difficult non-convex optimization problems. In particular, we have addressed the problem of 
robust structured control and on-ship spiral inductor design. Numerical experiments exemplify 
the resolution of this kind of problems. 
 
Keywords: Non-convex optimization problems, stochastic optimization methods, heuristic 
Kalman algorithm (HKA),quasi geometric programming (QGP), fixed structure controller, mixed 
sensitivity control problem, loop-shaping design, on-ship spiral inductor. 
 
 
 



 

INTRODUCTION 
In all areas of engineering, physical and social sciences, one encounters problems involving the 
optimization of some objective function. Usually, the problem to solve can be formulated 
precisely but is often, difficult or impossible to solve either analytically or through conventional 
numerical procedures. This is the case when the problem is non-convex and so inherently 
nonlinear and multimodal. In fact it is now well established that the frontier between the 
efficiently solvable optimization problems and the others rely on its convexity (Rockafellar, 
1993). This is confirmed by the fact that very efficient algorithms for solving convex problems 
exist (Boyd & Vandenberghe, 2004), whereas the problem of non-convex optimization remains 
largely open despite an enormous amount of effort devoted to its resolution. 
 
In this context, several heuristic methods, also called metaheuristics, have been developed in the 
last two decades, which have demonstrated a strong ability to solve problems that were 
previously difficult or impossible to solve (Fogel 2006, Kirkpatrick & Gelatt 1983, Toscano 
2013). These metaheuristics include simulated annealing (SA), genetic algorithm (GA), particle 
swarm (PS), to cite only the most used in the framework of continuous optimization problems. 
 
Simulated annealing (SA) is a random-search method introduced by S. Kirkpatrick in 1983 and 
by V. Cerný in 1985 (Kirkpatrick & Gelatt 1983, Cerny 1985). The name comes from a technique 
used in metallurgy, called annealing, which consists in heating and slowly cooling a metal to 
obtain a "well ordered" solid state of minimal energy (Dréo & al 2006). An interesting property 
of SA is its ability to avoid getting stuck in a local minima. This is obtained by using a random 
procedure which not only accepts changes that decrease the cost function J (assuming a 
minimization problem), but also some changes that increase it. The latter are accepted with a 
probability exp(-∆J/T), where ∆J  is the increase in J and T is a control parameter, which by 
analogy with the physical annealing is known as the system temperature. The main advantage of 
the SA is that it achieves a good quality solution, i.e. the absolute error to the global minimum is 
generally lower than that obtained via other metaheuristics. Moreover, it is versatile and easy to 
implement. The main drawbacks of SA lie mainly in the choice of the various parameters 
involved by this algorithm. The results obtained are indeed very sensitive to the parameter 
settings. Consequently, the problem of the selection of the "good parameters" (for a given cost 
function) is a crucial issue, which is however not yet entirely solved. Another weakness of the 
method, linked to the problem of parameter setting, is its excessive computing time in most 
applications. More detailed developments on SA, both practical and theoretical, can be found in 
(Spall 2003, Dréo & al 2006). 
 
Genetic algorithm (GA), is a population-based stochastic search technique introduced by J. H. 
Holland in 1962 and popularized by D. E. Goldberg in 1989 (see also Coello, Lamont & 
Veldhuizen 2007, Lobo, Lima, & Michalewicz, 2007, Goldberg 2013). This approach uses a 
population of points containing several potential solutions, each of which is evaluated and a new 
population is created from the best of them via randomized operators, such as selection, crossover 
and mutation, inspired by the natural reproduction and evolution of living creatures. The process 
is continued through a number of generations with the aim that the population evolves toward an 
acceptable solution. The main advantage of GA (and its many versions) is its robustness as well 
as its intuitiveness, ease of implementation, and the ability to deal successfully with a wide range 
of difficult problems. By robustness it must be understood that, within fairly wide margins, the 
problem of adjusting the parameters is not very critical. This insensitivity makes it possible to 
find acceptable solutions without excessive effort. A main drawback with GA is that some well 
adapted individuals (compared to the other members of the population, but faraway from the 
optimum point), dominate the population, causing it to converge on a local minimum. In these 



 

conditions, the probability of finding better solutions is very small because crossover between 
similar individuals, produces little changes. Only mutation remains to seek the best individuals, 
but this is generally not sufficient for a fast convergence toward the best solution. The latter 
requires thus an excessive computational time. 
 
Particle swarm optimization (PSO) is a relatively recent stochastic optimization technique 
developed by J. Kennedy and R. Eberhart in 1995 (see also Clerc 2010). GA and PSO are similar 
in the sense that these two approaches are population-based random search methods but with 
different strategies of evolution. PSO draws its inspiration from the collective behavior of living 
beings, including the notion of collective intelligence of a population of individuals. It is a 
population based search algorithm where each individual is called a particle and represents a 
candidate solution. Each particle i evolves within the search space and is characterized by its 
position xi and its change in position vi, called velocity. The key point lies in the manner in which 
the velocity is modified at each iteration. By analogy with the observations made about social 
behaviors1, the velocity of a particle is modified according to its own previous best solution and 
its group's previous best solution, with the aim to get an improvement (i.e. in the sense of a 
decrease of the cost function). The main advantage of the PSO is its ease of implementation as 
well as its ability to find good solutions much faster than other metaheuristics (less function 
evaluations). However, it cannot improve the quality of the solutions as the number of iterations 
is increased (Angeline 1998). Similar to the GA, an important drawback with PSO, is that the 
swarm may prematurely converge. This is mainly because particles converge to a point which is 
on the line between the global best point and the personal best positions. However this point is 
not guaranteed to be even a local optimum. Another drawback, similar to the SA, is the great 
sensitivity of PSO to parameter settings: a small change in parameters may result in a 
proportionally large effect (Lovberg and Krink 2002).  
 
Although a large number of approaches have been proposed in the literature to improve these 
metaheuristics,  non-convex optimization is still a challenging subject, mainly because of very 
large variability concerning the topological properties of the underlying objective function. For 
this reason, it is always useful to explore new principles allowing the resolution of a wide range 
of non-convex optimization problems. In this spirit, one of the objectives of this paper is to 
introduce a new alternative optimization method (developed by the author), which we call 
Heuristic Kalman Algorithm (HKA) (Toscano & Lyonnet, 2009a, 2009b, 2010). Another 
objective of this chapter is to introduce an extension of standard geometric programming (GP) 
problems which we call quasi geometric programming (QGP) problems (Toscano & Amouri 
2012). The consideration of this particular kind of nonlinear and possibly non smooth 
optimization problem is motivated by the fact that many engineering problems can be formulated 
as a QGP. To solve this kind of problems (QGP), an algorithm is proposed which is based on the 
resolution of a succession of standard GP. An interesting feature of the proposed approach is that 
it does not need to develop specific program solver and works well with any existing solver able 
to solve conventional geometric programs. Some considerations on the robustness issue are also 
presented. 
 

                                                 
1 According to the observation of Boyd and Richardson 1985, human beings utilize two important kinds of 
information in the decision process. The first one is their own experience, i.e. they have tried the choice and 
know which state has been better so far and also how good it was. The second one is the experience of 
others, i.e. the  knowledge about how the other agents around them have performed (Chakrabarti & al. 
2006). 



 

In the last part, the ability of HKA and QGP in solving difficult non-convex problems is 
illustrated through two domains of application, namely: robust structured control and on-ship 
spiral inductor design. Numerical experiments exemplify the resolution of this kind of problems. 
 
 
 
BACKGROUND: THE OPTIMIZATION PROBLEM 
Optimization is the way of obtaining the best possible outcome given the degrees of freedom and 
the constraints. To make our discussion more precise, consider the general system presented in 
Figure 1, which produces an output in response to a given input. In addition, this system has some 
tuning parameters allowing the modification of its behaviour. By behavior we mean the 
relationship existing between the inputs and outputs. 
 
 
 
 
 
 
 
 

 
 

Figure 1: An optimization problem. 
 
The problem is then how to tune these parameters so that the system behaves well. Usually, the 
desired behavior can be formulated via an objective function (or cost function) depending on the 
tuning parameters f(q), which needs to be maximized or minimized with respect to q. More 
formally, the problem to solve can be formulated as follows: find the optimal tuning parameters 
qopt, solution of the following problem: 
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where RR →qn
f :  is a function for which the minimum2 ensures that the system behaves as we 

want, F is the feasible domain i.e. the set of vector D∈q  satisfying the Nc constraints gi, and D 
is the search domain3 i.e. the set under which the minimization is performed. Generally 

T
nq

qqq ][ 1 L=  is called the design (or decision) vector, and its nq components the decision or 

design variables. The vectors T

nq

qqq ][
1
L=  and T

nq
qqq ][ 1 L=  are the bounds of the search 

domain and the symbol e≤  means a componentwise inequality. The functional constraints gi can 

be handled by introducing a new objective function including penalty functions: 
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3 D is a hyberbox and so it is also called the hyperbox search domain. 

 

Inputs Outputs 
System 

Tuning parameters q 



 

 
Where Nc is the number of constraints and the wi’s are weighting factors. There exists a 
vast literature dealing with the problem of the updating rule of the weighting factor (see 
for instance Coello, 2000, Coello, 2002). However, in most practical applications, the 
choice of constant weighting factors leads to a satisfying solution (possibly sub-optimal). 
In this case, the setting of the wi’s must be done to penalize more or less strongly the 
violation constraints. Note that if q satisfies the constraints then )()( qfqJ = . In these 
conditions solving problem (1) is the same as solving the following optimization 
problem: 
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Thus posed, the objective is then to find the optimum qopt i.e. the nq-dimensional decision vector 

D∈q  which minimizes the cost function J.  
Unfortunately, there are several obstacles for solving this kind of problem. The main obstacle is 

that most of the optimization problems are NP-hard (Garey & Johnson, 1979). Therefore the 
known theoretical methods cannot be applied except possibly for some small size problems. 
Other difficulties are that the cost function may be not differentiable and/or multimodal. 
Therefore the set of methods requiring the derivatives of the cost function cannot be used. 
Another obstacle is when the cost function cannot be expressed in an analytic form, in this case, 
the cost function can be only evaluated through simulations. 
In these situations, heuristic approaches seem to be the only way for solving optimization 
problems. By heuristic approach, we mean a computational method employing experimentations, 
evaluations and trial-and-errors procedures in order to obtain an approximate solution for 
computationally difficult problems. In the next section, we will present a recently developed 
optimization methods called Heuristic Kalman Algorithm (HKA) which seems to be, in some 
cases, an interesting alternative to the conventional approaches. 
 
Heuristic Kalman Algorithm (HKA) 
In this section, we introduce a recently developed optimization method called Heuristic Kalman 
Algorithm (HKA) (Toscano & Lyonnet, 2009, Toscano & Lyonnet, 2010, Toscano 2013). As 
GA and PSO, HKA falls into the category of the so called “population based stochastic 
optimization technique”. However, its principle is entirely different to other known stochastic 
algorithms. Indeed, HKA considers the optimization problem as kind of learning process intended 
to give an estimate of the optimum. It utilizes a Gaussian probability density function (GPDF), a 
measurement process (MP) and a Kalman estimator (KE) allowing to improve the quality of the 
estimate obtained through the MP. The GPDF evolves in the search space seeking the optimal 
solution of the optimization problem. A GPDF is characterized by its mean vector m and its 
variance matrix Σ. For seeking the optimal solution, the parameters of the GPDF are updated by 
taking into account sample points obtained through a measurement process; this is done using a 
Kalman estimator. Indeed, a Kalman estimator can be seen as a mechanism able to update our 
knowledge about unknown quantities of interest, by taking into account new gained information. 
The “movement” of the GPDF is then adjusted according to its current mean value and the new 
information obtained via the measurement process. The repetition of this procedure leads the 
GPDF toward a domain of the search space containing, hopefully, high-quality solutions. 
 
 



 

Principle of the algorithm 
The principle of the algorithm is shown Figure 2. The proposed procedure is iterative, and we 
denote by k, the kth iteration of the algorithm. We have a random generator of probability density 
function (pdf) g(q), which produces, at each iteration a collection of N vectors that are distributed 
about a given mean vector m(k) with a given variance-covariance matrix Σ(k). This collection can 
be written as follows: 
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Figure 2: Principle of the algorithm. 
 
This random generator is applied to the cost function J. Without loss of generality, we assume 
that the vectors are ordered by their increasing cost function i.e.: 
 

))(())(())(( 21 kqJkqJkqJ N<<< L                   (5) 
 
The principle of the algorithm is to modify the mean vector and the variance matrix of the 
random generator until a high quality solution is reached. More precisely, let Nξ be the number of 

considered best samples, that is such that ))(())(( kqJkqJ iN <ξ  for all ξNi > . Note that the best 

samples are those of the sequence (4) which have the smallest cost function. The objective is then 
to generate, from the best samples, a new random distribution that approaches the minimum of 
the cost function J. The problem is how to modify the parameters of the random generator to 
achieve a reliable estimate of the optimum. 

To solve this problem, we introduce a measurement procedure followed by an optimal 
estimator of the parameters of the random generator. The measurement process consists in 
computing the average of the candidates that are the more representative of the optimum. For the 
iteration k, the measurement, denoted ξ(k), is then defined as follows: 
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where Nξ is the number of considered candidates. We can consider that this measure gives a 
perturbed knowledge about the optimum, i.e. 
 

)()( kvqk opt +=ξ        (7) 

 
where v(k) is an unknown disturbance, which is centered on qopt, and acting on the measurement 
process. Note that v(k) is the random vector between the measure ξ(k) and the unknown optimum 
qopt. In other words, v(k) is a kind of measure of our ignorance about qopt. Of course, this 
uncertainty cannot be measured but only estimated by taking into account all available 
knowledge. In our case, the uncertainty of the measure is closely related to the dispersion of the 
best samples qi(k) ( ξNi ,,1K= ). 

 
Our ignorance about the optimum can thus be taken into account by using the variance vector 
associated to these best samples: 
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In these conditions, the Kalman estimator can then be used to make an estimate, so-called 
“a posteriori”, of the optimum, i.e. taking into account the measure as well as the 
confidence we place in it. As seen, this confidence can be quantified by the variance 
vector (8).  
 
Updating rules of the Gaussian generator. Our objective is to design an optimal estimator that 
combines a prior estimation of qopt and the measurement ξ(k), so that the resulting posterior 
estimate is better in the sense of a diminution of the cost function (minimization problem). Based 
on the Kalman equations, the updating rule of the Gaussian generator are as follows (see Toscano 
& Lyonnet, (2010) for a detailed derivation): 
 





−+=+

−+=+

))()()(()()1(

))()()(()()1(

kSkWkakSkS

kmkkLkmkm ξ
                  (9) 

 

With: 







Σ−=
+ΣΣ= −

21d

1

)]]())([(vec[)(

)))((diag)()(()(

kkLIkW

kVkkkL
, and: 

))((max)(,1min

)(,1min

)(

1

2

1

1

2

1

1

kwkv

kv

ka

i
ni

n

i in

n

i in

q

q

q

q

q

≤≤=

=

+





























=

∑

∑α
 

           (10) 
where m(k) is the mean value of the Gaussian distribution, S(k) is the standard deviation vector of 

the Gaussian generator 21d )))((vec()( kkS Σ= , vecd(.) is the diagonal vector of the matrix (.), 
diag(V(k)) is a diagonal matrix having in its diagonal the variance vector V(k), vi(k) represents the 
i th component of the variance vector V(k) defined in (8), wi(k) is the i th component of the vector 
W(k), and ]1,0(∈α  is given by the user (usually α is set about 0.4 to 0.7). The coefficient )(ka  

is used to control the decrease over time of the variance matrix Σ(k). This decrease ensures a 
progressive transition from global search to local search. 



 

Note that all the matrices used in this formulation (i.e. L(k), Σ(k)) are diagonals. Consequently, 
to save computation time we have to use a vectorial form for computing the various quantities of 
interest. The vectorial form of (9) and, (10) are given by: 
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where the symbol ⊗ stand for a element-by-element product and, similarly, // means a element-
by-element divide. The variance matrix Σ(k+1) of the Gaussian generator is then updated as 

follows: 2)))1((diag()1( +=+Σ kSk . 
 
Algorithm 
According to the principles discussed above, the minimization of the objective function J(q) (see 
relation (3)) can be done according to the following algorithm. 
 

1. (Initialization). Choose N, Nξ and α. Set 0=k , 0)( mkm = , 0)( Σ=Σ k . 
 

2. (Gaussian generator). Generate a sequence of N vectors )(,),(),( 21 kqkqkq N
L , 

according to a Gaussian distribution parametrized by )(km  and  )(kΣ . 
 

3. (Measurement process). Using relations (6) and (8) compute ξ(k) and V(k). 
4.  (Updating rules of the Gaussian generator). Using relations (11) update the parameter 

of the Gaussian generator. 
 

5. (Stopping rule). If the stopping rule is not satisfied go to step 2 otherwise stop. 
 
The practical implementation of this algorithm requires: an appropriate initialization of the the 
Gaussian distribution i.e. 0m  and 0Σ ; the selection of the user defined parameters namely i.e.: N, 

Nξ and α.; the introduction of a stopping rule. These various aspects are considered hereafter. 
 
Initialization and parameter settings. The initial parameters of the Gaussian generator are 
selected to cover the entire search space. To this end, the following rule can be used: 
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where iq  (respectively 

i
q ) is the i th upper bound (respectively lower bound) of the hyperbox 

search domain. With this rule, 99% of the samples are generated in the intervals: ii σµ 3± , 

qni ,,1L= . 

We have to set the three following parameters: the number of points N, the number of best 
candidates Nξ and the coefficient α. To facilitate this task, table 1 summarizes the standard 
parameter setting of HKA. 



 

 

Table 1. Standard parameter setting of HKA.  
 Number of sample points (N)  20 ≤ N ≤ 150 
 Number of best candidates  2 ≤ Nξ < N 
 Coefficient α  0.4 to 0.9 

 
Stopping rule. The algorithm stops when a given number of iterations MaxIter is reached 
(MaxIter = 300 in all our experiments) or a given accuracy indicator is obtained. The latest take 
into account the dispersion of the Nξ best points. To this end, we consider that no significant 
improvement can be done when the Nξ best points are in a ball of a given radius ρHKA (e.g. 

005.0=HKAρ ). More precisely, the algorithm stops when: 
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where 
2

  ⋅  represents the Euclidean norm of its argument, and ξNqq ,,1
L  are the Nξ best 

candidate solutions. 
 

In conclusion, the search procedure HKA is articulated around three main components, the 
Gaussian pdf function gk(q) (parametrized by m(k) and Σ(k), the measurement process and the 

Kalman estimator. Sampling from the pdf gk(q) at iteration k, creates a collection of vectors q(k). 
This collection is then used by the measurement process to give an information about the 
optimum. Via the Kalman estimator, this information is then combined with the pdf gk(q) in order 

to produce a new pdf gk+1(q) which will be used in the next iteration. After a sufficient number 
of iterations, the sequence of estimates (i.e. the m(k)) thus produced leads to a near 
optimal solution. 
 
Advantages and disadvantages of HKA 
HKA shares with some other stochastic algorithms the same interesting features such as: ease of 
implementation, low memory and CPU speed requirements, search procedure based only on the 
values of the objective function, no need of strong assumptions such as linearity, differentiability, 
convexity etc, to solve the optimization problem. In fact it could be used even when the objective 
function cannot be expressed in an analytic form; in this case, the objective function is evaluated 
through simulations. However, the main drawback is that HKA may prematurely converge to a 
local solution, notably when the coefficient α is too high (say about 0.9). The trick is to use low 
values of this parameter but this lead to a slow convergence of the algorithm. In fact this 
parameter allows to adjust the trade off between global and local search. 
 
Quasi Geometric Programming 

Geometric programming (GP) has proved to be a very efficient tool for solving various 
kinds of engineering problems. This efficiency comes from the fact that geometric 
programs can be transformed to convex optimization problems for which powerful global 
optimization methods have been developed. As a result, globally optimal solution can be 
computed with great efficiency, even for problems with hundreds of variables and 
thousands of constraints, using recently developed interior-point algorithms. A detailed 
tutorial of GP and comprehensive survey of its recent applications to various engineering 
problems can be found in the paper by Boyd, Kim, Vandenberghe & Hassibi 2007. 



 

In this section we introduce a particular type of nonlinear program which we call quasi 
geometric programming (QGP) problems. The idea behind QGP is very simple, it means 
that a problem become GP when some variables are kept constants. To solve this kind of 
problems (QGP), an algorithm is proposed which is based on the resolution of a 
succession of standard GP. The interesting thing is that the proposed approaches doesn't 
need to develop specific program solver and works well with any existing solver able to 
solve conventional geometric programs (for instance cvx, see Grant & Boyd 2010). From 
a practical point of view this is very interesting because the engineers often have not so 
much time to develop specific algorithm for solving particular problems. 
 
Geometric Programming (GP) 
GP is a special type of nonlinear, non-convex optimisation problems. A useful property 
of GP is that it can be turned into a convex optimization problem and thus a local 
optimum is also a global one, which can be computed very efficiently. Since QGP is 
based on the resolution of GP, this section gives a short presentation of GP both in 
standard and convex form. 
 
Standard formulation. Monomials are the basic elements for formulating a geometric 
programming problem. A monomial is a function RR →++

n  defined by4: 
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where nqq L1  are n positive variables, c is a positive multiplicative constant and the 

exponentials ai, ni L1=  are real numbers. We will denote by q the vector )( 1 nqq L . A 

sum of monomial is called a posynomial: 
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Minimizing a posynomial subject to posynomial upper bound inequality constraints and 
monomial equality constraints is called GP in standard form: 
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where mif i L1, = , are posynomials and pigi L1, = , are monomials.   

 
Convex formulation. GP in standard form is not a convex optimisation problem5, but it 
can be transformed to a convex problem by an appropriate change of variables and a log 

                                                 
4 In our notations, R++ represents the set of positive real numbers. 
5 A convex optimization problem consists in minimizing a convex function subject to convex inequality 
constraints and linear equality constraints. 



 

transformation of the objective and constraint functions. Indeed, if we introduce the 
change of variables ii qy log=  (and so iy

i eq = ), the posynomial function (15) becomes: 
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where kk cb log= , taking the log we obtain ∑ =
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convex function of the new variable y. Applying this change of variable and the log 
transformation to the problem (16) gives the following equivalent optimization problem: 
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Since the functions if  are convex, and jg  are affine, this problem is a convex 

optimization problem, called geometric program in convex form. However, in some 
practical situations, it is not possible to formulate the problem in standard geometric 
form, the problem is then not convex. In this case the problem is generally difficult to 
solve even approximately. In these situations, it seems very useful to introduce simple 
approaches able to give if not the optimum, at least a good near-optimum. In this spirit, 
we are now ready to introduce the concept of quasi geometric programming.  
 
Formulation of a Quasi Geometric Programming Problem (QGP) 
Consider the nonlinear program defined by 
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where the vector nz ++∈ R  include all the optimization variables, RR →∈ ++

nf :0  is the 

objective function or cost function, RR →∈ ++
n

if :  are the inequality constraint functions 

and RR →∈ ++
n

jg :  are the equality constraint functions. This nonlinear optimization 

problem is called a quasi geometric programming problem if it can be formulated into the 
following form (Toscano & Amouri, 2012): 
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where xnx ++∈ R  and ξξ n
++∈ R , with nnnx =+ ξ , are sub-vector of the optimization variable 

nz ++∈ R . The functions mixi ,,0),,( K=ξϕ  are posynomials and pjxhj ,,1),,( K=ξ  

are monomials. The only particular assumption made about the functions )(0 ξQ , )(ξiQ  

and )(' ξjQ , is that they are positives. Except for their positivity, no other particular 

assumption is made; these functions can be even non-smooth. 
 
It is important to insist on the fact that the problem (20) cannot be converted into a GP in 
the standard form (16) and thus the problem is not convex. As a consequence, no 
approach exists for finding quickly even a sub optimal solution by using available GP 
solvers. Although specific algorithms can be designed to find out a sub optimal solution 
to problem (20), we think that it could be very interesting solving these problems by 
using standard GP solvers. Indeed, this should be interesting for at least two reasons. 
Firstly the ability of solving problem (20) using available GP solvers allows time saving; 
the development of a specific algorithm is always a long process and in an industrial 
context of great concurrency there is often no time to do that. Secondly, the available GP 
solvers like for instance cvx are very easy to use and, which is most important, are very 
very efficient.  Problems involving tens of variables and hundreds of constraints can be 
solved on a small current workstation in less than one second. 
 
All these reasons justify the approach presented here after. Indeed, this method does not 
require the development of particular algorithms and are based on the use of available 
zero order algorithm (ZOA) and GP solvers. 
 
Resolution of a QGP 
The QGP (20) is not at all easy to solve when )(0 ξQ , )(ξiQ  and )(' ξjQ  have no 

particular form. In this case indeed, the problem is intrinsically non-convex, and thus, in 
general, there is no obvious transformation allowing to solve (20) via the resolution of a 
sequence of standard GP. To solve this kind of problem, we can see the QGP (20) like a 
function of ξ that we want to minimize: 
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where ξ  and ξ  are simple bound constraints on the decision variable ξ, and the function 

)(ξJ  is defined as follows: 
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Problem (21) is a non-convex unconstrained optimization problem6 and can be solved 
using well known zero order algorithms7 (ZOA) such as: Nelder-Mead simplex method 
(NMSM) (Kelley, 1999), simulated annealing, genetic algorithm, particle swarm 
optimization or Heuristic Kalman Algorithm. The code associated to these various 
algorithms are easily available and thus don't need to be programmed. 
 
When ξ is kept constant, problem (22) is a standard GP which can be solved very 
efficiently using available GP solvers. This suggests that we can solve the QGP problem 
(20) with a two levels procedure. At the first level, the chosen ZOA search algorithm is 
used to select a value of ξ within the bounds. For the selected value of ξ, the standard GP 
(22) is solved using available solvers. This procedure is continued until some stopping 
rule is satisfied. The suggested procedure is formalized more precisely in the following 
algorithm. 
 

1. Set inf=:bestF . 
 

2. Using a zero order algorithm (ZOA), generate ξ* such that ξξξ ≤≤ . 
 

3. For the value ξ*  solve the standard GP problem (22). This gives, w.r.t ξ*, the 
optimal solution denoted x*. 

 

4. If problem (22) is not feasible, then set inf:=F and goto 2. Else set 
)(),(: *

0
**

0 ξξϕ QxF −= . 
 

5. If bestFF ≥  then goto 2. Else set FFbest =: , *: xxbest = , *: ξξ =best  and goto 2. 
 

6. At the end of the ZOA, the optimal solution is given by ),( bestbestx ξ . 

 
In this algorithm, inf represents the IEEE arithmetic representation for positive 
infinity, and Fbest is a variable containing the current best objective function. Note that the 
use of ``global optimization methods'' like SA, GA, PSO or HKA, increases the 
probability of finding a global optimum but this is not guaranteed, except perhaps if the 
search space of problem (21) is explored very finely, but this is cannot be done in a 
reasonable time.   
 
APPLICATION TO ROBUST STRUCTURED CONTROL AND SPIRAL 
INDUCTORS DESIGN 
 
Robust structured control 
The problem of designing a robust controller with a given fixed structure (e.g. a MIMO PID) 
remains an open issue (Toscano & Lyonnet, 2009b, Toscano, 2013). This is mainly due to the fact 
that the set of all fixed-order/structure stabilizing controllers is non-convex and disconnected in 
the space of controller parameters. This is a major source of computational intractability and 
conservatism. Nevertheless, due to their practical importance, some approaches for structured 

                                                 
6 We have only simple bound constraints on the decision variable ξ. 
7 Zero order algorithms does not require the knowledge of the derivatives of the objective function. Thus 
smoothness is not required. 



 

control have been proposed in the literature. Most of them are based on the resolution of Linear 
Matrix Inequalities LMIs. However, a major drawback with this kind of approaches is the use of 
Lyapunov variables, whose number grows quadratically with the system size. For instance, if we 
consider a system of order 70, this requires, at least, the introduction of 2485 unknown variables 
whereas we are looking for the parameters of a fixed-order/structure controller which contains a 
comparatively very small number of unknowns. It is then necessary to introduce new techniques 
capable of dealing with the non-convexity of certain problem arising in automatic control without 
introducing extra unknown variables. We will show that stochastic methods can be used to this 
end. 
 
Formulation of the optimization problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3:  Block diagram of the feedback control system. 
 
Consider the general feedback setup shown in Figure 3, in which G(s) represents the transfer 
matrix of the process to be controlled: 
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and K(s) is, for instance, the transfer matrix of a PID controller8  
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where Kp is the proportional gain, Ki and Kd are the integral and derivative gains respectively, and 
τ is the time constant of the filter applied to the derivative action. This low-pass first-order filter 
ensures the properness of the PID controller and thus its physical realizability. In addition, since 
G(s) is strictly proper (i.e. it is assumed that D22 = 0), the properness of the controller ensures the 
well-posedness of feedback loop.  

                                                 
8 Due to its large diffusion, we consider a PID controller, but the described approach applies for any other fixed structure controller. 
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As depicted Figure 4, the closed-loop system has m external input vectors 
mww n

m

n
ww RR ∈∈ ,,1

1 L  and m output vectors mzz n

m

n
zz RR ∈∈ ,,1

1 L . Roughly speaking, the 

global input vector w = [w1 … wm]T captures the effects of the environment on the feedback 
system; for instance noise, disturbances and references. The global output vector z = [z1 … zm]T 
contains all characteristics of the closed-loop system that are to be controlled. To this end, the 

controller K(s) utilizes the measured output vector yn
y R∈ , to elaborate the control action vector 

unu R∈  which modify the natural behavior of the process G(s). 
The objective is then to determine the PID parameters (Kp, Ki, Kd, τ) allowing to satisfy some 

performance specifications such as: a good set point tracking, a satisfactory load disturbance 
rejection, a good robustness to model uncertainties and so on. A powerful way to enforce these 
kinds of requirements is first to formulate the performance specifications as an optimization 
problem and then to solve it by an appropriate method. In the HHHH∞ framework, the optimization 
problem can take the following forms: 
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where ),( qsT
ii zw  denotes the closed-loop transfer matrix from wi to zi, 

qn
q R∈  is the vector of 

decision variables regrouping the entries of the matrices Kp, Ki, Kd, and the time constant τ, λi(q) 
denotes the i th pole of the closed-loop system and s is the Laplace variable. In the formulation 
(21) the constraint g1(q) is required to ensure the stability of the closed-loop system. To do so, the 
parameter λmin must be set to a negative value. 

Note that this formulation is quite general and can be used to specify many control objectives. 
For instance, the formulation (25) includes the PID loop-shaping design problem as well as the 
single or mixed sensitivity PID control problem. In the numerical experiments we will see some 
applications belonging to theses two kind of control problems. 

The constrained optimization problem (25) can be transformed into an unconstrained one, by 
introducing a new objective function which includes penalty functions (see relation (2) and (3)).  

 
Remark concerning the feasibility issue. In many engineering problems the bounds of a 
feasible search domain are often known a priori because they are linked to purely material, 
physical considerations. This is not so clear in control problem for which we have to impose a 
priori an hyperbox search domain containing stabilizing controllers (i.e. potential solutions of the 
optimal HHHH∞ problem). Finding a priori such a hyperbox is not trivial at all. However, for a given 
hyperbox search domain it is possible to say whether or not the problem is feasible. More 
precisely, the feasibility problem can be stated as follows. Given the hyperbox search domain 
DDDD =  { qiiii niqqqRq ,,1,: L=≤≤∈ } is there a stabilizing controller? This important issue 

can be treated via HKA by solving the following optimization problem: 
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(26) 

 
where λi(q) represents the i th pole f the closed-loop system. Let q* the solution found to the 
problem (26). If Jλ(q*) < 0, then the problem is feasible within D.  
 
Numerical experiments 
In this section, we show the ability of stochastic methods to solve problems (25). Although this 
can be done using SA, GA or PSO, we utilize the HKA mainly because of its novelty. Concerning 
the control design by means of other stochastic methods see for instance Jamshidi et al. (2002), 
Motoda, Stengel & Miyazawa (2002), Maruta, Kim, & Sugie (2008). 
 
Mixed sensitivity approach. In this example we consider the mixed sensitivity control problem 
shown in figure 4, where G(s) represents the transfer matrix of the process to be controlled (see 
Saeki, 2006): 
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Figure 4:  Mixed sensitivity control problem. 

 

The weighting functions are V(s)=v1(s)I2, W(s)=v2(s)I2, v1(s)=(s+3)/(3s+0.3), 
v2(s)=(10s+2)/(s+40), and a=0.01. The objective is to develop a decentralized PID controller 
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that minimize 
∞

= ),()( xsTxJ wz , where ),( xsTwz  is the closed-loop transfer matrix from w 

to z: 
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where L(s,x) is defined as L(s,x)=K(s,x)G(s). Note that this problem is of the form (25). The 
search space is 33 ≤≤− ix , 6,,1K=i . In this test, we performed the minimization 30 times and 

we compared our results with those obtained via ALPSO (Augmented Lagrangian Particle Swarm 
Optimization see Kim, Maruta & Sugie, 2008). The design parameters are: N=25, Nξ=5 and 
α=0.4. 

The best solutions obtained via ALPSO and HKA are listed in Table 2, and the statistical results 
are shown in Table 3. 

Table 2. Comparison of the best solutions found via ALPSO and HKA. 
 Kp1 Ki1 Kd1 Kp2 Ki2 Kd2 J(x) 

ALPSO 1.8015 1.9477 2.683e-2 1.8252 1.8135 1.188e-2 0.5842 

HKA 1.8109 1.8422 1.833e-2 1.8188 1.9259 2.235e-2 0.5836 
 
Table 3. Statistical results (comparison between ALPSO and HKA). 

 
 

 
Best 

 
Mean 

 
Worst 

 
Std Dev 

 
CPU time 

Average number of 
function evaluations 

ALPSO 0.5842 - - - 50 s - 
HKA 0.5836 0.5850 0.5884 0.001 35 s 3175 

From Table 2, it can be seen that the best solution found by HKA is similar to the one found via 
the ALPSO method. From Table 3, we can observe that HKA is faster than ALPSO, in addition, 
the dispersion of the solutions is very low. 

Note that the PID controller gains have been found directly by solving the optimization problem 
via the HKA method. The proposed strategy is straightforward, and thus can be easily applied to a 
wide range of engineering control problems. For instance, in this third example, the mixed 
sensitivity control problem has been solved without using LMI transformation as it is required in 
the approach of Saeki (2006). 

PID loop-shaping design. HHHH∞ loop-shaping design procedure proposed by Mc Farlane and 
Glover (1992) is an efficient method to design robust controllers and has been successfully 
applied to a variety of practical problems. In this framework, the plant G(s) is first shaped with a 
pre-compensator W1(s) and a post-compensator W2(s). The ponderation W1(s) and W2(s) are 
chosen so that the weighted plant W1(s)G(s)W2(s) has a desired loop shape, typically a large gain 
at low frequencies for performance and a small gain at high frequencies for noise attenuation.  

 

 

 

 

Figure 5:  Loop-shaping HHHH∞ design. 
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Once the desired loop shape is achieved, HHHH∞ norm of the transfer function matrix from 
disturbances w1 and w2 to the outputs z1 and z2 (see figure 5) is minimized over all stabilizing 
controllers9: 
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The final controller is then implemented as W1(s)K(s)W2(s) and has no specific structure. The 

quantity  
∞

= )(/1 optzw KTε  is known as the robust stability margin; usually value of   2.0>ε  

or 0.3 is considered as very satisfactory in the sense that the controller Kopt does not significantly 
alter the desired open-loop frequency response. Moreover, this ensures robustness of the closed-
loop system to coprime factor uncertainties (Mc Farlane and Glover, 1992). 

For loop-shaping design with PID, we adopt the strategy introduced in Genc (2000) and 
Apkarian, Bompart and Noll (2007). In this approach, the controller K is structured as 

PIDKWK 1
1
−= , where KPID is a PID controller. Thus the optimization problem (30) becomes: 
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and the final controller is implemented as 2
* WKPID . Since W2 is usually chosen as a low pass 

filter, the resulting controller has better noise attenuation in the high frequency range than an 
usual PID controller. 

Application to a separating tower. We consider now the application of the HKA to the control 
design for a chemical process described in Genc (2000) and Apkarian, Bompart and Noll (2007). 
It consists of a 24-tray tower for separating methanol and water. The transfer matrix model for 
controlling the temperature on the 4th and 17th trays is given as: 
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9 Note that this optimisation problem is of the form (25). 



 

The transfer matrix (32) is approximated by a rational model using 2nd-order Padé approximation 
of the delays. This lead to a 12th-order model. The weighting matrix W1 and W2 are taken from 
Genc (2000) and Apkarian, Bompart and Noll (2007): 
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The complete system incorporating the compensators is therefore of 18th-order. Our objective is 

to find the PID parameters Txxx ],,[ 131 L=  ( 33 ≤≤− ix , 13,,1K=i ) defined as follows: 
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to obtain the best possible robustness margin. In Genc (2000) a state-space BMI (bilinear matrix 
inequality) formulation has been used to characterize PID solutions of the HHHH∞ optimization 
problem (31). The algorithm used to solve this problem is a D-K iteration scheme. The author 
reported 38 minutes of cputime to obtain the following solution: 
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The corresponding robustness margin is 249.002.4/1 ==ε . In Apkarian, Bompart and Noll 
(2007) the same problem was solved using a non-smooth optimization technique. The algorithm 
was initialized with the above solution and the following PID was found in about 1 minute: 
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The corresponding robustness margin is 343.091.2/1 ==ε . This is an impressive improvement 
in term of cputime and robustness margin compared to the result reported by Genc (2000). In our 
case, we solved the optimization problem 15 times (N=50, Nξ=3 and α=0.5). The best solution 
found via HKA is as follows: 
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The corresponding robustness margin is 341.093.2/1 ==ε . Step responses are shown in 
figures 6. The best solution was found in about 66 seconds on 1.2 Ghz Celeron personal 
computer. Note that this PID controller is very close to the result obtained by Apkarian, Bompart 
and Noll (2007). However it must be noticed that the proposed approach is very easy to use and 
does not require any complicated mathematical derivation. Compared to D-K iteration or non-



 

smooth optimization, HKA seems to be a good alternative in term of simplicity, near optimallity 
of the solutions and computation time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Step responses obtained with the HKA PID controller. 

 
Design of spiral inductors on silicon 
On-chip spiral inductors is an essential part of any radio frequency integrated circuit such as 
voltage controlled oscillators, low-noise amplifiers etc. Consequently, the optimal design of this 
kind of component is of great practical importance (Toscano & Lyonnet, 2012). 

 
Figure 5:  Square inductor layout. 

 
Figure 5 shows the layout for square inductors, some other shapes can be used such as hexagonal, 
octagonal, or circular. For a given shape, an inductor is completely specified by the number of 
turns n, the turn width w, the turn spacing s, the inner diameter din and the outer diameter dout (see 
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figure 5). These parameters are typically the design variables of the inductor. Indeed, the 
inductance depends upon the geometry of the inductor, and so, for a desired inductance we have 
to determine the values of the layout parameters. But this is not sufficient, because at high 
frequencies (i.e. in the Ghz range), some complicated losses mechanisms must be taken into 
account to make a realistic design. 
 
In the sequel, we first introduce a well-accepted inductor model able to take into account the 
losses via parasitic resistances and capacitances. On the basis of this model, the optimal design of 
an on chip inductor is realized by using quasi geometric programming (QGP). 
 
Inductor model 
Figure 6(a) illustrates the basic structure of a planar spiral inductor on silicon. It consists of a 
metal trace manufactured by low-resistivity metals such as aluminium, copper, gold or silver. The 
metal spiral is mounted on silicon dioxide layer which acts as insulation between the metal trace 
and the silicon substrate. Figure 6(a) also highlights the parasitic resistances and capacitances 
which are introduced to model the losses. 
 

 
Figure 6:  Structure of an inductor on silicon and equivalent electrical model. 

 
The corresponding electrical model of the spiral inductor on silicon is presented in figure 6(b), 
see the paper by Yue, Ryu, Lau, Lee & Wong 1996, for a detailed derivation. This model takes 
into account the parasitic resistances and capacitances responsible of the losses in the structure. 
The inductance Ls, and the resistances and capacitances Rs, Cs, Rp, Cp are defined as follows: 
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The function z(din , dout) and the constants k1, k2, k3, k7, k8 and k9 are given by: 
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where the parameters c1, c2, c3, c4, c5 depend upon the  shape of the inductor (square, hexagonal, 
octagonal or circular); the parameters ρ, r, εox, tox, tox,M1-M2, Csub, Gsub are technology dependent, 
and ω is the working frequency of the inductor.  
 
The performance of an inductor is measured by its quality factor Q, which is limited by the 
parasitics. This quantity is defined as the ratio of peak magnetic energy minus peak electric 
energy to energy dissipated in the inductor see Yue, Ryu, Lau, Lee & Wong 1996: 
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An inductor is at self-resonance when the peak magnetic and electric energies are equal. 
Therefore, Q vanishes to zero at the self-resonance frequency ωsr i.e.: 
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Above the self-resonance frequency, no net magnetic energy is available and thus it is generally 
required that 

m
i
n

,srsr ωω ≥ , where 
m
i
n

,srω  is the desired minimal self-resonance frequency. 

 
Formulation of the optimization problem 
For a required value Lreq of the inductance, the optimization consists in determining the values of 
the layout parameters (i.e n, w, s, dout and din) which maximizes the quality factor while ensuring 
the desired minimal self-resonance frequency 

m
i
n

,srω . In addition some geometry constraints must 

be added such as: a minimum turn width wmin, a minimum spacing smin, a minimum inner diameter 
din,min and a maximum outer diameter dout,max which limit the inductor area. The design variables 
din and dout are not independents and are related to the other design variables by the expression 

outin dnwsnd =+−+ 2)1(2 . Since s is typically small compared to din, dout and w, we can recast this 

equality constraint as the inequality constraint: 
outin dswnd ≤++ )(2 . The optimal design problem 

of the inductor can then be formulated as: 
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This optimization problem can be solved using, for instance, a genetic algorithm (see section 2.2). 
However, problem (39) can be also formulated as a QGP problem. 
 
 
 



 

Indeed, after some basic manipulations we get the following equivalent problem: 
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where α is an additional variable, Ls, Rs, Cs, Rp and Cp are given by (35). Thus formulated, the 
problem (40) is QGP in the design variables din and dout and so can be efficiently solved using the 
approach described in section 3. 
 
Numerical experiments 
Problem (40) has been solved using the Nelder-Mead simplex method10 based QGP (NMSM-
QGP), the results thus obtained were then compared to those obtained using a standard genetic 
algorithm (GA). In our experiments, the following parameters have been used: 
 

.H1030,rad/s108

m104m,10,m109.1

m/S104,F106.1,m103.1

m105.4,F/m1045.3,rad/s103,m10

m102,4,13.0,18.0,07.2,27.1

99

446

2466
,

6696

8
54321

21

−

−−−

−−
−

−−−

−

×=×=

×==×==

×=×=×=

×=×===

Ω×======

req

subsubMMox

oxox

L

ddws

GCt

tt

ccccc

πω

επω
ρ

m
i
n

s
r
,

m
i
n

o
u
t
,

m
i
n

i
n
,

m
i
n

m
i
n

        (41) 

 
The solutions found via NMSM-QGP and GA are presented in Table 9. As we can see, the result 
obtained using NMSM-QGP is significantly better than the solution found by GA. However, 
despite a small number of function evaluations (which is in fact a number of GP-solver call), the 
computation time is large compared to GA. This is because the time cost for a GP-solver call is 
generally higher than the time cost of the objective function. 
 
Table 9. Comparison of the solutions found via GA (with N=200, NG=150, pc=0.7, pm=0.07) and 
NMSM-QGP (with the starting point (din=200, dout=300). 

Method n w s din dout Ls Q NbEval CPU Time 
Standard GA 9.440 4.491 3.73 147.60 309.07 29.99 2.821 30000 5 s 
NMSM-QGP 10.862 3.683 1.90 111.5 232.82 30.00 3.233 47 64 s 
 
CONCLUSIONS 
It is a matter of fact that Nature has been, and is always, a major source of inspiration for 
scientific and technical developments. Optimization does not escape to this rule and many 
                                                 
10 The Nelder-Mead simplex method is available in MatLab through the function fminsearch. In this 
example, the following parameters have been used for the stopping rule: TolFun=10-5 and TolX=0.1, 
where TolFun is the termination tolerance on the function value and TolX  is the termination tolerance. 



 

heuristic searches draw their foundations from physical or biological principles such as the main 
approaches reviewed in this chapter. Although they are pale imitations of the reality, these 
approaches have proven their efficiency in solving difficult optimizations problems. One of the 
main purposes with this chapter was to provide the essential ideas behind each presented 
optimization method as well as the algorithm and the usually adopted parameter setting. This 
could help the reader in the practical use of these methods. In addition to the standard stochastic 
algorithm, we have presented a recently developed optimization method called HKA as well as an 
extension of standard geometric programming, called QGP.  

The ability of HKA and QGP in solving difficult non-convex problem has been shown on many 
practical examples. In particular, we have addressed the problems of robust structured control and 
on-chip spiral inductor design. These topics lead indeed to non-convex constrained optimization 
problems which are known to be difficult to deal with using conventional methods. We have 
shown that stochastic methods in general and HKA/QGP in particular can be used to find out, in a 
straightforward manner, if not the optimal solution but at least a suboptimal one, which is very 
useful for the practitioner. 

 
REFERENCES 
Angeline, P. J. (1998). Using selection improve particle swarm optimization. In Proceedings of 

the IEEE International Conference on Evolutionary Computation (pp. 84-89). 
Piscataway, NJ: IEEE Press. 

 

Apkarian, P., Bompart, V., & Noll, D. (2007). Nonsmooth structured control design with 
application to PID loop-shaping of a process. Int. J. Robust Nonlinear Control, vol. 17, 
pp. 1320-1342. 

 
Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University 

Press. 
 
Boyd, S., Kim, S.-J., Vandenberghe, L., &  Hassibi, A. (2007). A Tutorial on Geometric 

Programming. Optimization and Engineering, vol. 8(1), pp. 67-127. 
 
Boyd, R., & Richardson, P. (1985). Culture and the evolutionary process. Chicago: University of 

Chicago Press. 
 
Cerny, V. (1985). A thermodynamical approach to the travelling salesman problem: an efficient 

simulation algorithm. Journal of Optimization Theory and Applications, 43(1), 41-51. 
 
Chakrabarti, R., Chattopadhyay, P. K., Basu, M. and Panigrahi, C. K.. (2006). Particle swarm 

optimization technique for dynamic economic dispatch. IE (I) Journal-EL, 87(3):48–54. 
 
Coello, C. A. C. (2000). Use of a self-adaptive penalty approach for engineering optimization 

problems. Computers in Industry, 41(2), 113-127. 
 
Coello, C. A. C. (2002). Theoretical and numerical constraint handling techniques used with 

evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied 
Mechanics and Engineering, 191(11-12), 1245-1287. 

 
Coello, C. A. C., Lamont G. B. & Van Veldhuizen D. A. (2007). Evolutionary Algorithms for 

Solving Multi-Objective Problems. Springer. 



 

 
Clerc, M. (2010). Particle Swarm Optimization for hard optimization. John Wiley & Sons. 
 
Dréo, J., Pétrowski, A., Siarry, P., & Taillard, E. (2006). Metaheuristic for hard optimization. 

Berlin: Springer-Verlag. 
 
Fogel, D. B. (2006). Evolutionary computation: towards a new philosophy of machine 

intelligence. New York: Wiley-IEEE Press. 
 
Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of 

NP-Completeness. San Francisco: Freeman 
 
Grant, M. & Boyd, S. (2010). CVX: Matlab Software for Disciplined Convex Programming, 

version 1.21. Available at: http://cvxr.com/cvx. 
 

Genc, A. U. (2000). A state-space algorithm for designing H∞ loopshaping PID controllers. Tech. 
report, Cambridge University, Cambridge, UK. 

 
Goldberg, D. E. (2013). Genetic Algorithms. Pearson Education. 
 
Holland, J. H. (1962). Outline for logical theory of adaptive systems. Journal of the ACM, 9(3), 

297-394. 
 
Jamshidi, M., Krohling, R., Dos Santos Coelho L., & Fleming, P. (2002). Robust control system 

with genetic algorithms. Boca Raton, FL: CRC Press (Taylor and Francis Group). 
 
Kelley, C. T. (1999). Iterative Methods for Optimization. SIAM Frontiers in Applied 
Mathematics, N° 18. 
 
Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of IEEE 

International Conference on Neural Networks (pp. 1942-1948). Piscataway, NJ: IEEE 
Press. 

 
Kim, T. H., Maruta, I., & Sugie, T. (2008). Robust PID controller tuning based on the constrained 

particle swarm optimization. Automatica, 44(4), 1104-1110. 
 
Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. 

Science, 220(4598), 671-680. 
 
Lobo, F.,  Lima, C. F., & Michalewicz, Z. (Eds.). (2007). Parameter Setting in Evolutionary 

Algorithms. Studies in Computational Intelligence. Berlin:Springer Verlag. 
 
Lovberg, M., & Krink, T. (2002). Extending particle swarm optimizers with self-organized 

criticality. In Proceedings of the fourth congress on evolutionary computation, Vol. 2  
(pp. 1588-1593). 

 
Maruta, L., Kim, T. H., & Sugie, T. (2008). Synthesis of fixed-structure Hinf, controllers 

via Constrained Particle Swarm Optimization. In Proceedings of the 17th IFAC World 
Congress, Seoul, Korea. 

 



 

McFarlane, D. & Glover K. (1992). A loop shaping design procedure using H∞ synthesis. IEEE 
Transactions on Automatic Control, vol. 37, pp. 759-769. 

 
Motoda, T., Stengel, R. F., Miyazawa, Y. (2002).  Robust Control System Design Using 

Simulated Annealing. Journal of Guidance, Control, and Dynamics 25(2), 267-274. 
 

Rockafellar, R. T. (1993). Lagrange multipliers and optimality. SIAM Review, 35(2), 183-238. 
 
Saeki, M. (2006). Fixed structure PID controller design for standard H∞ control problem. 

Automatica, vol. 42, pp. 93-100, 2006. 
 
Spall, J. C. (2003). Introduction to stochastic search and optimization. New York: Wiley-

Interscience, John Wiley & Sons. 
 
Toscano, R., & Lyonnet, P. (2009a). Heuristic Kalman Algorithm for solving optimization 

problems. IEEE Transaction on Systems, Man, and Cybernetics, Part B. Vol. 35(5), pp. 
1231-1244. 

 
Toscano, R., & Lyonnet, P. (2009b). Robust PID controller tuning based on the Heuristic Kalman 

Algorithm. Automatica, Vol. 45(9), pp. 2099-2106.  
 
Toscano, R., & Lyonnet, P. (2010). A new heuristic approach for non-convex optimization. 

Information Sciences. Vol. 180(10), pp. 1955-1966. 
 
Toscano, R. (2013). Structured Controllers for Uncertain Systems. A Stochastic Optimization 

Approach. Springer-Verlag. 
 
Toscano, R., &  Lyonnet, P. (2012). A Kalman optimization approach for solving some industrial 

electronics problems. IEEE Transactions on Industrial Electronic, Vol. 59, N° 11, pp. 
4456-4464, 2012. 

 
Toscano, R., & Amouri, S. B. (2012). Some heuristic approaches for solving extended geometric 

programming problems. Engineering Optimization, Vol. 44, N° 12, pp. 1425-1446. 
 
Yue, C. P., Ryu, C., Lau, J., Lee, T. H. & Wong, S. S. (1996). A physical model for planar spiral 

inductors on silicon. In Proceedings of the IEEE International conference on Electronic 
Devices. San Francisco, CA. 

 
 

 

 

 


