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ABSTRACT

This paper aims at solving difficult optimizationoplems arising in many engineering areas. To
this end, two recently developed optimization mdtlall be introduced: the heuristic Kalman
algorithms (HKA) and the quasi geometric programari@GP) problems. The principle of HKA
is to consider the optimization problem as a measent process intended to give an estimate of
the optimum. A specific procedure, based on therigal estimator, is developed to improve the
quality of the estimate obtained through a measentmprocess. A significant advantage of HKA
against other stochastic methods lies mainly insthall number of parameters which have to be
set by the user. In this paper we also introducexa@nsion of standard geometric programming
(GP) problems which we call quasi geometric programg (QGP) problems. The consideration
of this particular kind of nonlinear and possibbnnsmooth optimization problem is motivated by
the fact that many engineering problems can be dtated as a QGP. To solve this kind of
problems (QGP), an algorithm is proposed whichaseld on the resolution of a succession of
standard GP. An interesting feature of the prop@gmatoach is that it does not need to develop
specific program solver and works well with anystixig solver able to solve conventional GP. In
the last part of the paper, it is to shown that HKAd QGP can be efficiently used to solve
difficult non-convex optimization problems. In parttlar, we have addressed the problem of
robust structured control and on-ship spiral induatesign. Numerical experiments exemplify
the resolution of this kind of problems.

Keywords: Non-convex optimization problems, stochastic ogttion methods, heuristic
Kalman algorithm (HKA),quasi geometric programm{@GP), fixed structure controller, mixed
sensitivity control problem, loop-shaping desigmnsship spiral inductor.



INTRODUCTION

In all areas of engineering, physical and soci@raes, one encounters problems involving the
optimization of some objective function. Usualljet problem to solve can be formulated
precisely but is often, difficult or impossible $olve either analytically or through conventional
numerical procedures. This is the case when thélgro is non-convex and so inherently
nonlinear and multimodal. In fact it is now welltaslished that the frontier between the
efficiently solvable optimization problems and ththers rely on its convexity (Rockafellar,
1993). This is confirmed by the fact that very @#nt algorithms for solving convex problems
exist (Boyd & Vandenberghe, 2004), whereas the Ipmlof non-convex optimization remains
largely open despite an enormous amount of effevbted to its resolution.

In this context, several heuristic methods, aldeedametaheuristics, have been developed in the
last two decades, which have demonstrated a stedilify to solve problems that were
previously difficult or impossible to solve (Fog2006, Kirkpatrick & Gelatt 1983, Toscano
2013). These metaheuristics include simulated dimgeéSA), genetic algorithm (GA), particle
swarm (PS), to cite only the most used in the fraamk of continuous optimization problems.

Simulated annealing (SA) is a random-search meihtndduced by S. Kirkpatrick in 1983 and
by V. Cerny in 1985 (Kirkpatrick & Gelatt 1983, ®@gr1985). The name comes from a technique
used in metallurgy, called annealing, which cossiet heating and slowly cooling a metal to
obtain a "well ordered" solid state of minimal eme(Dréo & al 2006). An interesting property
of SA is its ability to avoid getting stuck in ackd minima. This is obtained by using a random
procedure which not only accepts changes that dser¢he cost functiod (assuming a
minimization problem), but also some changes theteiase it. The latter are accepted with a
probability exg(-4J/T), whereAJ is the increase id andT is a control parameter, which by
analogy with the physical annealing is known assystem temperature. The main advantage of
the SA is that it achieves a good quality solutiom, the absolute error to the global minimum is
generally lower than that obtained via other mataktcs. Moreover, it is versatile and easy to
implement. The main drawbacks of SA lie mainly e tchoice of the various parameters
involved by this algorithm. The results obtaine@ amdeed very sensitive to the parameter
settings. Consequently, the problem of the seleabiothe "good parameters” (for a given cost
function) is a crucial issue, which is however get entirely solved. Another weakness of the
method, linked to the problem of parameter settisgits excessive computing time in most
applications. More detailed developments on SAh lpractical and theoretical, can be found in
(Spall 2003, Dréo & al 2006).

Genetic algorithm (GA), is a population-based séstic search technique introduced by J. H.
Holland in 1962 and popularized by D. E. Goldbeng1089 (see als€oello, Lamont &
Veldhuizen 2007Lobo, Lima, & Michalewicz, 2007, Goldberg 2013 his approach uses a
population of points containing several potent@lsons, each of which is evaluated and a new
population is created from the best of them vialosmized operators, such as selection, crossover
and mutation, inspired by the natural reproductiod evolution of living creatures. The process
is continued through a number of generations withaim that the population evolves toward an
acceptable solution. The main advantage of GA {Endhany versions) is its robustness as well
as its intuitiveness, ease of implementation, &edability to deal successfully with a wide range
of difficult problems. By robustness it must be arglood that, within fairly wide margins, the
problem of adjusting the parameters is not vergicadi This insensitivity makes it possible to
find acceptable solutions without excessive effArtnain drawback with GA is that some well
adapted individuals (compared to the other membérhe population, but faraway from the
optimum point), dominate the population, causingpiconverge on a local minimum. In these



conditions, the probability of finding better satuts is very small because crossover between
similar individuals, produces little changes. Oniutation remains to seek the best individuals,
but this is generally not sufficient for a fast gergence toward the best solution. The latter
requires thus an excessive computational time.

Particle swarm optimization (PSO) is a relativebcaent stochastic optimization technique
developed by J. Kennedy and R. Eberhart in 1995 gt Clerc 2010). GA and PSO are similar
in the sense that these two approaches are papuladised random search methods but with
different strategies of evolution. PSO draws ispiration from the collective behavior of living
beings, including the notion of collective intedligce of a population of individuals. It is a
population based search algorithm where each ithgi@liis called a particle and represents a
candidate solution. Each partidleevolves within the search space and is charaeteriwy its
positionx; and its change in position, called velocity. The key point lies in the manirewhich

the velocity is modified at each iteration. By atpl with the observations made about social
behavior$, the velocity of a particle is modified accorditmjits own previous best solution and
its group's previous best solution, with the aimget an improvement (i.e. in the sense of a
decrease of the cost function). The main advantdgkee PSO is its ease of implementation as
well as its ability to find good solutions much tirsthan other metaheuristics (less function
evaluations). However, it cannot improve the gyadit the solutions as the number of iterations
is increased (Angeline 1998). Similar to the GA,important drawback with PSO, is that the
swarm may prematurely converge. This is mainly beegarticles converge to a point which is
on the line between the global best point and #msgmal best positions. However this point is
not guaranteed to be even a local optimum. Anothhawback, similar to the SA, is the great
sensitivity of PSO to parameter settings: a smhlhnge in parameters may result in a
proportionally large effect (Lovberg and Krink 2002

Although a large number of approaches have beegpopeal in the literature to improve these
metaheuristics, non-convex optimization is stiktallenging subject, mainly because of very
large variability concerning the topological prdies of the underlying objective function. For
this reason, it is always useful to explore newmgples allowing the resolution of a wide range
of non-convex optimization problems. In this spinhe of the objectives of this paper is to
introduce a new alternative optimization methodvéeped by the author), which we call
Heuristic Kalman Algorithm (HKA) (Toscano & Lyonnet, 2009a, 2009b, 2010). Arey
objective of this chapter is to introduce an exmm®f standaradjeometric programming (GP)
problems which we caljuasi geometric programming (QGP) problems (Toscano & Amouri
2012). The consideration of this particular kind wénlinear and possibly non smooth
optimization problem is motivated by the fact thany engineering problems can be formulated
as a QGP. To solve this kind of problems (QGP)lgorithm is proposed which is based on the
resolution of a succession of standard GP. Anéstarg feature of the proposed approach is that
it does not need to develop specific program sawel works well with any existing solver able
to solve conventional geometric programs. Someideretions on the robustness issue are also
presented.

! According to the observation of Boyd and Richard$685, human beings utilize two important kinds of
information in the decision process. The first @their own experience, i.e. they have tried theice and
know which state has been better so far and alsodund it was. The second one is the experience of
others, i.e. the knowledge about how the othentgaround them have performed (Chakrabarti & al.
2006).



In the last part, the ability of HKA and QGP in wdah difficult non-convex problems is
illustrated through two domains of application, mdyn robust structured control and on-ship
spiral inductor design. Numerical experiments exégnihe resolution of this kind of problems.

BACKGROUND: THE OPTIMIZATION PROBLEM

Optimization is the way of obtaining the best pblesbutcome given the degrees of freedom and
the constraints. To make our discussion more pFeciansider the general system presented in
Figure 1, which produces an output in responsegioen input. In addition, this system has some
tuning parameters allowing the maodification of lehaviour. By behavior we mean the
relationship existing between the inputs and owtput
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Figure 1: An optimization problem.

The problem is then how to tune these parametetbaddhe system behaves well. Usually, the
desired behavior can be formulated viaodfective functior(or cost functioh depending on the
tuning parameter§(g), which needs to be maximized or minimized witspect toq. More
formally, the problem to solve can be formulatedal®ws: find the optimal tuning parameters
Qopt, SOlution of the following problem:

Qo =argmin f(q)
7 ={q0®:g,(a)<0,i=1...,N} (1)
CD:{qDR”q :gseqseq}

where f :R™ _ R is a function for which the minimufensures that the system behaves as we
want, Fis thefeasible domain i.e. the set of vectoq® satisfying theN. constraintgy, and <

is the search domdini.e. the set under which the minimization is perfed. Generally
qg=[q, - qnq]T is called thedesign(or decisior) vector, and it$1; components the decision or

design variables. The vectogs= [9,--q 1" andq =[q ﬁnq]T are the bounds of the search

domain and the symbat, means a componentwise inequality. The functionabktraintsg; can
be handled by introducing a new objective functimtuding penalty functions:

I(@) = £(a)+ 3w max(@, ).0) @

2 Note that any maximisation problem can be convarterda minimization problem, indeed;op‘ = argmax J(q) = argmin- J(q)
q1F qF

3 disa hyberbox and so it is also called the hypedsarch domain.



WhereN; is the number of constraints and thés are weighting factors. There exists a
vast literature dealing with the problem of the afnaly rule of the weighting factor (see
for instance Coello, 2000, Coello, 2002). Howevermost practical applications, the
choice of constant weighting factors leads to esfyatg solution (possibly sub-optimal).

In this case, the setting of thg's must be done to penalize more or less strorgty t
violation constraints. Note that ¢ satisfies the constraints thel{q) = f(q). In these

conditions solving problem (1) is the same as sglvthe following optimization
problem:

Gope = 2rgmin J(a) o
@:{qDRn“ :gseqseq}

Thus posed, the objective is then to find the optmg,, i.e. then,-dimensional decision vector
g0 which minimizes the cost functiah

Unfortunately, there are several obstacles forisglthis kind of problem. The main obstacle is

that most of the optimization problems are NP-h@drey & Johnson, 1979). Therefore the
known theoretical methods cannot be applied expegsibly for some small size problems.
Other difficulties are that the cost function mag hot differentiable and/or multimodal.
Therefore the set of methods requiring the denreatiof the cost function cannot be used.
Another obstacle is when the cost function canmoéxpressed in an analytic form, in this case,
the cost function can be only evaluated throughuktions.
In these situations, heuristic approaches seemetdhb only way for solving optimization
problems. By heuristic approach, we mean a compuatmethod employing experimentations,
evaluations and trial-and-errors procedures in rorte obtain an approximate solution for
computationally difficult problems. In the next sen, we will present a recently developed
optimization methods calledeuristic Kalman Algorithm (HKA) which seems to be, in some
cases, an interesting alternative to the conveatiapproaches.

Heuristic Kalman Algorithm (HKA)

In this section, we introduce a recently developptimization method calleHeuristic Kalman
Algorithm (HKA) (Toscano & Lyonnet, 2009, Toscano & Lyonn210, Toscano 2013). As
GA and PSO, HKA falls into the category of the sallexl “population based stochastic
optimization technique”. However, its principle eatirely different to other known stochastic
algorithms. Indeed, HKA considers the optimizagowvablem as kind of learning process intended
to give an estimate of the optimum. It utilizes auGsian probability density function (GPDF), a
measurement process (MP) and a Kalman estimatoy #K&wing to improve the quality of the
estimate obtained through the MP. The GPDF evaivdbe search space seeking the optimal
solution of the optimization problem. A GPDF is chaterized by its mean vectan and its
variance matrixz. For seeking the optimal solution, the parametéithe GPDF are updated by
taking into account sample points obtained throagheasurement process; this is done using a
Kalman estimator. Indeed, a Kalman estimator casdsn as a mechanism able to update our
knowledge about unknown quantities of interesttakyng into account new gained information.
The “movement” of the GPDF is then adjusted acewydo its current mean value and the new
information obtained via the measurement procebe. fEpetition of this procedure leads the
GPDF toward a domain of the search space contaihopefully, high-quality solutions.



Principle of the algorithm
The principle of the algorithm is shown Figure ZeTproposed procedure is iterative, and we
denote by, thek" iteration of the algorithm. We have a random gatoerof probability density

function (pdf) g(a), which produces, at each iteration a collectibiN@ectors that are distributed

about a given mean vectaxk) with a given variance-covariance matkfk). This collection can
be written as follows:

ak) ={ g (), (k). -+, q" ()} (4)

whered/(K) is thei"™ vector generated at the iteration numkeq' (k) =[q; (K), ---,qu(k)]T , and
q (k) is thel™ component of(k) (I =1,...,n,).

— i | i=N i i=N
N Random Generato a(k) _{ qk} i=1 | Cost Function { J(qk)} i=
o= ’

(m.z,) ()
\
(m.=,) Optimal | ¢k | Measuremen
Estimator Process
<—o0 N¢

Figure 2: Principle of the algorithm.

This random generator is applied to the cost foncli Without loss of generality, we assume
that the vectors are ordered by their increasirsg ftmction i.e.:

I(@'(K) < I@* (k) <~ < I(a" (k) ()

The principle of the algorithm is to modify the mesector and the variance matrix of the
random generator until a high quality solutioneéached. More precisely, I8 be the number of

considered best samples, that is such t}(qtN“(k)) < J(q' (k) for all i > N . Note that the best

samples are those of the sequence (4) which haventhllest cost function. The objective is then
to generate, from the best samples, a new randsimbdition that approaches the minimum of
the cost function). The problem is how to modify the parameters & thndom generator to
achieve a reliable estimate of the optimum.

To solve this problem, we introduce a measuremeatguure followed by an optimal
estimator of the parameters of the random generdioe measurement process consists in
computing the average of the candidates that @ entlre representative of the optimum. For the
iterationk, the measurement, denot&®), is then defined as follows:

1
=224 K (6)

&=l



where N; is the number of considered candidates. We casidenthat this measure gives a
perturbed knowledge about the optimum, i.e.

$(K) = Qope + UUK) (")

wherev(k) is an unknown disturbance, which is centeredignand acting on the measurement
process. Note tha{k) is the random vector between the measg(keand the unknown optimum
Qope: IN other wordsv(k) is a kind of measure of our ignorance abqguy. Of course, this
uncertainty cannot be measured but only estimatgdtaliing into account all available
knowledge. In our case, the uncertainty of the meass closely related to the dispersion of the

best sampleg'(k) (i =1...,N,).

Our ignorance about the optimum can thus be takBnaccount by using the variance vector
associated to these best samples:

V00 =] L ei00-£00)- 3 (0, 004, (k))} ®

In these conditions, the Kalman estimator can theensed to make an estimate, so-called
“a posteriorf, of the optimum, i.e. taking into account the @@ as well as the
confidence we place in it. As seen, this confideoar be quantified by the variance
vector (8).

Updating rules of the Gaussian generator. Our objective is to design an optimal estimatot tha
combines a prior estimation @bpt and the measuremedtk), so that the resulting posterior
estimate is better in the sense of a diminutiothefcost function (minimization problem). Based
on the Kalman equations, the updating rule of thesSian generator are as follows (see Toscano
& Lyonnet, (2010) for a detailed derivation):

{m(k +1) = m(k) + L(k)(£(k) —m(Kk)) ©)
S(k +1) = S(k) + a(k)(W(Kk) - S(k))
With:
{L(k) =20 vdagv o) m"{l (FZm®) j
W(K) = [ved[(1 - L(K)Z(K)]Y? min(l (12% NG (k)ﬂ +max(w, (K))
(10)

wherem(K) is the mean value of the Gaussian distributik), is the standard deviation vector of
the Gaussian generat@(k) = (vec’ (Z(k)))*?, ved() is the diagonal vector of the matrix (.),

diag(v(k)) is a diagonal matrix having in its diagonal tlagiance vecto¥(k), vi(k) represents the
i" component of the variance vecték) defined in (8)wi(K) is thei™ component of the vector
W(k), anda [0 (0,1] is given by the user (usuallyis set about 0.4 to 0.7). The coefficiea(tk)

is used to control the decrease over time of theawee matrix=(k). This decrease ensures a
progressive transition from global search to I@earch.



Note that all the matrices used in this formulafjioe. L(k), Z(k)) are diagonals. Consequently,
to save computation time we have to use a vectfmial for computing the various quantities of
interest. The vectorial form of (9) and, (10) aieeg by:

m(k +1) = m(k) + vec (L(k)) O (£(k) - m(k))
S(k +1) = (k) - a(k)(W (k) = S(K)) (11)
ved (L(k)) = ved (Z(k)) //(ved (£(k)) +V (k)

where the symball stand for a element-by-element product and, sityjl# means a element-
by-element divide. The variance matixk+1) of the Gaussian generator is then updated as

follows: Z(k +1) = (diag(S(k +1)))*.

Algorithm
According to the principles discussed above, theimization of the objective functiod(q) (see
relation (3)) can be done according to the follayéigorithm.

1. (Initialization). ChooseN, Nsanda. Setk =0, m(k) =m,, >(k) =Z,.

2. (Gaussian generator). Generate a sequence bF vectors g'(k), g°(k),---,q" k)
according to a Gaussian distribution parametrizednfk) and (k).

3. (Measurement process). Using relations (6) and (8) compufiek) andV(K).
4. (Updating rules of the Gaussian generator). Using relations (11) update the parameter
of the Gaussian generator.

5. (Stopping rule). If the stopping rule is not satisfied go to steptiZerwise stop.

The practical implementation of this algorithm reggs: an appropriate initialization of the the
Gaussian distribution i.am, and Z,; the selection of the user defined parameters lyainee: N,

N anda.; the introduction of a stopping rule. These vasiaspects are considered hereafter.

Initialization and parameter settings. The initial parameters of the Gaussian generater a
selected to cover the entire search space. Temitisthe following rule can be used:

(12)

where @ (respectivelyq ) is thei™ upper bound (respectively lower bound) of the hype
search domain. With this rule, 99% of the samples generated in the intervalgs; + 30, ,
i=1-,n,.

We have to set the three following parameters: rthmber of pointsN, the number of best

candidatesN; and the coefficientr. To facilitate this task, table 1 summarizes tkendard
parameter setting of HKA.



Table 1.Standard parameter setting of HKA.

Number of sample point®d]f | 20<N< 150
Number of best candidates | 2<Ns<N
Coefficienta 0.4t00.9

Stopping rule. The algorithm stops when a given number of iteratMaxI t er is reached
(Max1t er =300 in all our experiments) or a given accuracycator is obtained. The latest take
into account the dispersion of tiN best points. To this end, we consider that noifsogmt
improvement can be done when tNg best points are in a ball of a given radjgiga (e.g.
Puka = 0005). More precisely, the algorithm stops when:

maX”q1 -q ”2 < Prka (13)

2<i<N;

where | [, represents the Euclidean norm of its argument, ghe--,q"¢ are theN; best
candidate solutions.

In conclusion, the search procedure HKA is artimdaaround three main components, the
Gaussian pdf functioni(q) (parametrized byn(k) and 2(k), the measurement process and the

Kalman estimator. Sampling from the pgifg) at iterationk, creates a collection of vectayk).
This collection is then used by the measurementgs® to give an information about the

optimum. Via the Kalman estimator, this informatiesrthen combined with the pdgf(q) in order
to produce a new pdf.1(g) which will be used in the next iteratiofAfter a sufficient number

of iterations, the sequence of estimates (i.e.ntfi¢) thus produced leads to a near
optimal solution.

Advantages and disadvantages of HKA

HKA shares with some other stochastic algorithnesghme interesting features such as: ease of
implementation, low memory and CPU speed requiréspesearch procedure based only on the
values of the objective function, no need of strasgumptions such as linearity, differentiability,
convexity etc, to solve the optimization problemfact it could be used even when the objective
function cannot be expressed in an analytic fomthis case, the objective function is evaluated
through simulations. However, the main drawbacth& HKA may prematurely converge to a
local solution, notably when the coefficiemtis too high (say about 0.9). The trick is to use |
values of this parameter but this lead to a slowmveogence of the algorithm. In fact this
parameter allows to adjust the trade off betweebajland local search.

Quasi Geometric Programming

Geometric programming (GP) has proved to be a e#igient tool for solving various
kinds of engineering problems. This efficiency cenfeom the fact that geometric
programs can be transformed to convex optimizagtiablems for which powerful global
optimization methods have been developed. As dtyegobally optimal solution can be
computed with great efficiency, even for problemghwhundreds of variables and
thousands of constraints, using recently develapgstior-point algorithms. A detailed
tutorial of GP and comprehensive survey of its meegplications to various engineering
problems can be found in the paper by Boyd, Kimmdémbergh& Hassibi 2007.



In this section we introduce a particular type ohimear program which we call quasi
geometric programming (QGP) problems. The ideartteRIGP is very simple, it means
that a problem become GP when some variables ateckastants. To solve this kind of
problems (QGP), an algorithm is proposed which @sed on the resolution of a
succession of standard GP. The interesting thirigaisthe proposed approaches doesn't
need to develop specific program solver and wor&l with any existing solver able to
solve conventional geometric programs (for instacwoe see Grank Boyd 2010). From

a practical point of view this is very interestihgcause the engineers often have not so
much time to develop specific algorithm for solvipayticular problems.

Geometric Programming (GP)

GP is a special type of nonlinear, non-convex oigation problems. A useful property
of GP is that it can be turned into a convex opation problem and thus a local
optimum is also a global one, which can be compwey efficiently. Since QGP is
based on the resolution of GP, this section giveshat presentation of GP both in
standard and convex form.

Standard formulation. Monomials are the basic elements for formulatingeometric
programming problem. A monomial is a functi®], — R defined by:

f(@=cqg g g (14)

where q,---q, aren positive variables¢ is a positive multiplicative constant and the
exponentialsl, i =1.--n are real numbers. We will denote §yhe vector(q,---q,)- A
sum of monomial is called a posynomial:

K 1 2 n
f(a)=> ga o5 - g5 (15)
k=1

Minimizing a posynomial subject to posynomial uppeund inequality constraints and
monomial equality constraints is called GP in staddorm:

minimize f,(q)

subjectto f,(gq)<1 i=1....m (16)
g()=1 i=1--,p
where f,, i =1.--m, are posynomials ang,, i =1.-- p, are monomials.

Convex formulation. GP in standard form is not a convex optimisatiosbfent, but it
can be transformed to a convex problem by an apiatepchange of variables and a log

* In our notationsR.. represents the set of positive real numbers.
® A convex optimization problem consists in minimigia convex function subject to convex inequality
constraints and linear equality constraints.



transformation of the objective and constraint fiows. Indeed, if we introduce the
change of variabley. =logg, (and soq =e€”), the posynomial function (15) becomes:

f(y)=chex iaikyij=2exda[y+bk) 17)

where b, =logc, , taking the log we obtairf (y) = Iog(z:zlexp(a[ymk)), which is a

convex function of the new variable Applying this change of variable and the log
transformation to the problem (16) gives the follegvequivalent optimization problem:

minimize  f,(y) = log(>"" exp@l,y +by.))
subject to ﬂ(y):Iog(Z:‘zlexp(qumik))s 0, i=1...,m (18)
g,(y)=ajy+b;, j=1--,p

Since the functionsf, are convex, andg; are affine, this problem is a convex

optimization problem, called geometric program nwex form. However, in some

practical situations, it is not possible to formaldhe problem in standard geometric
form, the problem is then not convex. In this cse problem is generally difficult to

solve even approximately. In these situationsgénss very useful to introduce simple
approaches able to give if not the optimum, attlaagood near-optimum. In this spirit,

we are now ready to introduce the concept of gqge@smetric programming.

Formulation of a Quasi Geometric Programming Problem (QGP)
Consider the nonlinear program defined by

minimize f,(2)
subjectto f,(2)<0, i=1....,m (19)
0,(2=1 j=1-,p

where the vectorzOR], include all the optimization variables,, IR}, - R is the
objective function or cost functiorf, IR, — R are the inequality constraint functions
and g, ORI, -~ R are the equality constraint functions. This nogdin optimization

problem is called a quasi geometric programmindplera if it can be formulated into the
following form (Toscano & Amouri, 2012):

minimize @, (x,$) ~Qy(<)
subjectto ¢,(x,§)<Q (<), i=1....m (20)
hj(xlg):Q'j (Q()’ J:l’p



where xORY and E0ORY,, with n,_ + n; =n, are sub-vector of the optimization variable
zORY,. The functionsg, (x,€), i =0,...,m are posynomials anth (x,§), j=1...,p
are monomials. The only particular assumption metoisut the function€), &(,)Q (¢)
and Q'; (¢), is that they are positives. Except for their peiy, no other particular
assumption is made; these functions can be eveismooth.

It is important to insist on the fact that the desb (20) cannot be converted into a GP in
the standard form (16) and thus the problem is garivex. As a consequence, no
approach exists for finding quickly even a sub mjti solution by using available GP
solvers. Although specific algorithms can be desthyto find out a sub optimal solution
to problem (20), we think that it could be veryeirgsting solving these problems by
using standard GP solvers. Indeed, this shouldnteresting for at least two reasons.
Firstly the ability of solving problem (20) usingalable GP solvers allows time saving;
the development of a specific algorithm is alwaybrg process and in an industrial
context of great concurrency there is often no timdo that. Secondly, the available GP
solvers like for instance cvx are very easy to aisé, which is most important, are very
very efficient. Problems involving tens of variebland hundreds of constraints can be
solved on a small current workstation in less thiae second.

All these reasons justify the approach presentee afer. Indeed, this method does not
require the development of particular algorithms ane based on the use of available
zero order algorithm (ZOA) and GP solvers.

Resolution of a QGP
The QGP (20) is not at all easy to solve wh@n¢é ,(Q(¢) and Q; € ) have no

particular form. In this case indeed, the problenmtrinsically non-convex, and thus, in
general, there is no obvious transformation allgatim solve (20) via the resolution of a
sequence of standard GP. To solve this kind oflpropwe can see the QGP (20) like a
function of ¢ that we want to minimize:

minimize F(&) =J(&)-Q,(&)

. - (21)
subjectto {<é<¢

where § and & are simple bound constraints on the decision kg and the function
J(&) is defined as follows:

J@=min §,(x.4)

st. ¢ (x&)<Q ), i=1...m 22)
hj(x’g):Qlj (5)1 J::Llp



Problem (21) is a non-convex unconstrained optitiimaprobleni and can be solved
using well known zero order algorithm&OA) such as: Nelder-Mead simplex method
(NMSM) (Kelley, 1999), simulated annealing, genetgorithm, particle swarm
optimization or Heuristic Kalman Algorithm. The @ddassociated to these various
algorithms are easily available and thus don't nedxe programmed.

When £ is kept constant, problem (22) is a standard GRlwkan be solved very
efficiently using available GP solvers. This suggdbat we can solve the QGP problem
(20) with a two levels procedure. At the first lewlie chosen ZOA search algorithm is
used to select a value éfwithin the bounds. For the selected valu€,ahe standard GP
(22) is solved using available solvers. This praceds continued until some stopping
rule is satisfied. The suggested procedure is fizethmore precisely in the following
algorithm.

1. SetF __:=inf.

best "™
2. Using a zero order algorithm (ZOA), generétesuch that¥ < ¢ < g.
3. For the valuef solve the standard GP problem (22). This givest . the
optimal solution denotex .
4. If problem (22) is not feasible, then sét:=inf and goto 2. Else set
Fi=¢,(X,&)-Q(&).
5. If F>F

best

then goto 2. Else st = F, X=X, & =& and goto 2.

o

At the end of the ZOA, the optimal solution is giMey (X,.c» pest) -

In this algorithm,i nf represents the IEEE arithmetic representation fositive
infinity, and FpestiS @ variable containing the current best objectiinction. Note that the
use of ""global optimization methods" like SA, GRSO or HKA, increases the
probability of finding a global optimum but this @t guaranteed, except perhaps if the
search space of problem (21) is explored very ¥inblt this is cannot be done in a
reasonable time.

APPLICATION TO ROBUST STRUCTURED CONTROL AND SPIRAL
INDUCTORS DESIGN

Robust structured control

The problem of designing a robust controller witlgigen fixed structure (e.g. a MIMO PID)
remains an open issue (Toscano & Lyonnet, 2009%cdrm, 2013). This is mainly due to the fact
that the set of all fixed-order/structure stabilizicontrollers is non-convex and disconnected in
the space of controller parameters. This is a msgarce of computational intractability and
conservatism. Nevertheless, due to their practiopbrtance, some approaches $uctured

® We have only simple bound constraints on the émtigariableé.
7 Zero order algorithms does not require the knoggeof the derivatives of the objective functionu$h
smoothness is not required.



control have been proposed in the literature. Most of theenbased on the resolution of Linear
Matrix Inequalities LMIs. However, a major drawbaaskh this kind of approaches is the use of
Lyapunov variables, whose number grows quadrajiesth the system size. For instance, if we
consider a system of order 70, this requires, agt]ehe introduction of 2485 unknown variables
whereas we are looking for the parameters of alfbmler/structure controller which contains a
comparatively very small number of unknowns. Ithen necessary to introduce new techniques
capable of dealing with the non-convexity of certaioblem arising in automatic control without
introducing extra unknown variables. We will shdvattstochastic methods can be used to this
end.

Formulation of the optimization problem.

. {Zl < <—.°W1}
E E w
Zy € G(S) <—oWp

—>| K(9)

Figure 3: Block diagram of the feedback contradteyn.

Consider the general feedback setup shown in Figuia which G(s) represents the transfer
matrix of the process to be controlled:

{Z}:G(s){w} with: G(s)=|C, | D, D, (23)
\Y u

s Y1+rs |C, | D,

0 K,
B I
K(s,):|<p+|<i1+|<d > —[A‘<| K}z 0 —il‘ - 2K, (24)
|

whereK, is the proportional gairK; andKy are the integral and derivative gains respectj\atyl

T is the time constant of the filter applied to teivative action. This low-pass first-order filter
ensures the properness of the PID controller ans itis physical realizability. In addition, since
G(s) is strictly proper (i.e. it is assumed tlizh = 0), the properness of the controller ensures the
well-posedness of feedback loop.

8 buetoits large diffusion, we consider a PID coltr, but the described approach applies for ghgrdfixed structure controller.



As depicted Figure 4, the closed-loop system has external input vectors
W1DRHV“,---,WmDRnwm and m output vectorszlﬂanl,---,zm OR™ . Roughly speaking, the

global input vectow = [w; ... w,]" captures the effects of the environment on theltfaek
system; for instance noise, disturbances and mfese The global output vectorE [z ... z]"
contains all characteristics of the closed-looptesysthat are to be controlled. To this end, the

controllerK(s) utilizes the measured output vectpElR™ , to elaborate the control action vector

uOR™ which modify the natural behavior of the proc€ss).

The objective is then to determine the PID pararsdlg, Ki, Kq, 7) allowing to satisfy some
performance specifications such as: a good sett p@Eoking, a satisfactory load disturbance
rejection, a good robustness to model uncertaiatiesso on. A powerful way to enforce these
kinds of requirements is first to formulate the fpanance specifications as an optimization
problem and then to solve it by an appropriate wekttin the &, framework, the optimization
problem can take the following forms:

Minimize 3 (q) = [T, (s, a=[vedK,) vedK,) vedKy,) 1"
Subjectto: - g,(q) = argmaxRe() (a)), Hi} = Ay, <0
i (4

9,(0) =[T,,..(s @)~ 1, <0 (25)
On(@) = [T (50|~ V=0

where TVM (s,q) denotes the closed-loop transfer matrix fraqrto z, qO R™ is the vector of

decision variables regrouping the entries of théricesK, K, Ky, and the time constamt Ai(Q)
denotes thé" pole of the closed-loop system asis the Laplace variable. In the formulation
(21) the constrairg,(q) is required to ensure the stability of the clekmap system. To do so, the
parametenl,i, must be set to a negative value.

Note that this formulation is quite general and barused to specify many control objectives.
For instance, the formulation (25) includes the RIDp-shaping design problem as well as the
single or mixed sensitivity PID control problem.thne numerical experiments we will see some
applications belonging to theses two kind of cdrproblems.

The constrained optimization problem (25) can badformed into an unconstrained one, by
introducing a new objective function which inclugenalty functions (see relation (2) and (3)).

Remark concerning the feasibility issue. In many engineering problems the bounds of a
feasible search domain are often known a priori because they are linkegurely material,
physical considerations. This is not so clear intd problem for which we have to impose a
priori an hyperbox search domain containing staibigj controllers (i.e. potential solutions of the
optimal &, problem). Finding a priori such a hyperbox is tritial at all. However, for a given
hyperbox search domain it is possible to say whethienot the problem is feasible. More
precisely, the feasibility problem can be statedadlews. Given the hyperbox search domain

D= {qg 0 R:q <q =q, i=1---,n } is there a stabilizing controller? This importassue
can be treated via HKA by solving the following iopization problem:



Minimize ], (q) = argmax{Re( (), i}
i (d
Subjectto: q <q <0, i=1---,n,

(26)

where A(q) represents thé" pole f the closed-loop system. Lgt the solution found to the
problem (26). 1{3,(g*) < O, then the problem is feasible withit

Numerical experiments

In this section, we show the ability stochastic methods to solve problems (25). Although this
can be done using SA, GA or PSO, we utilize the HK&inly because of its novelty. Concerning
the control design by means of otlseschastic methods see for instance Jamshadi al. (2002),
Motoda, Stengel & Miyazawa (2002), Maruta, Kim, &dge (2008).

Mixed sensitivity approach. In this example we consider the mixed sensitivitpteol problem
shown in figure 4, wher&(s) represents the transfer matrix of the procedsetaontrolled (see
Saeki, 2006):

1 02
c9=| St s33 27)
s+2 sTl
W
V(s —=& a |le—o
+
W o+ G(9) +O a Z3
\
u K(9) Y
W) —2

Figure 4. Mixed sensitivity control problem.

The weighting  functions are V(9)=vi(S)l,, W(S)=Vx(9)l2,  Va(S)=(s+3)/(35+0.3),
V2(9)=(10s+2)/(s+40), anda=0.01. The objective is to develop a decentral2ia controller

K 0 .
K(S,q) - pl + K|l o }_'_ Kdl 0 S
0 Ky 0 K,|ls | 0 K,|1+001s
q= [X1X2 X3 Xy X5 XB]T , With 1 %, = |0910(Kp1)! X, =log,,(Kj,), (28)

X; =10g,,(Kyy), X, = |0910(Kp2)’ X5 =109,0(K;,), X; =109,0(Ky,)

that minimize J(x) :||TWZ(S, x)||m, where T, (S X) is the closed-loop transfer matrix from

toz



VE(I -+ Lsx)) ' Usx)  —aV(s)(l + s x))"K(sX)
T.(8%) =]  W(s)(I + (s X)) ™ LUsX) aw(s)(I + (s x) K (s x) (29)
aG(e)(I -(1 + s x) ™ Usx) a*(I =G(s)(I + L(s X)) K (s X))

where L(s)X) is defined ad (sX)=K(sx)G(s). Note that this problem is of the form (25). The
search space is3< x <3, 1=1,...,6. In this test, we performed the minimization 30¢s and

we compared our results with those obtained via 2QFAugmented Lagrangian Particle Swarm
Optimization see Kim, Maruta & Sugie, 2008). Thesida parameters ar&=25, N=5 and
a=0.4.

The best solutions obtained via ALPSO and HKA @&tedl in Table 2, and the statistical results
are shown in Table 3.

Table 2.Comparison of the best solutions found via ALPS@HIKA

Kot Ki Ko Kp2 Kiz Ka J(X)
ALPSO 1.8015 1.9477 2.683e-2 1.8252 1.813% 1.188eR5842
HKA 1.8109 1.8422 1.833e-2 1.8188 1.9259 2.235¢-2583b

Table 3.Statistical results (comparison between ALPSO aké X

Average number of
Best Mean Worst Std Dev | CPUtime | function evaluations
ALPSO 0.5842 - - - 50 s -
HKA 0.5836 0.5850 0.5884 0.001 35s 3175

From Table 2, it can be seen that the best solditiond by HKA is similar to the one found via
the ALPSO method. From Table 3, we can observeHKa is faster than ALPSO, in addition,
the dispersion of the solutions is very low.

Note that the PID controller gains have been fodin€elctly by solving the optimization problem
via the HKA method. The proposed strategy is sifdgward, and thus can be easily applied to a
wide range of engineering control problems. Fotanse, in this third example, the mixed
sensitivity control problem has been solved withasing LMI transformation as it is required in
the approach of Saeki (2006).

PID loop-shaping design. &%, loop-shaping design procedure proposed by Mc farkand
Glover (1992) is an efficient method to design miboontrollers and has been successfully
applied to a variety of practical problems. In thimework, the plan&(s) is first shaped with a
pre-compensatolV,(s) and a post-compensatid¥,(s). The ponderationV;(s) and W(s) are
chosen so that the weighted pl&i(s)G(s)W,(s) has a desired loop shape, typically a large gain
at low frequencies for performance and a small galigh frequencies for noise attenuation.

Wy W2
+ +
Wi k> ae) /Wi ;@i
V4] T+ K
' ()

Figure 5. Loop-shaping¥, design.



Once the desired loop shape is achievéd, norm of the transfer function matrix from
disturbancesv; andw, to the outputg; andz (see figure 5) is minimized over all stabilizing
controllers:

Kopt =arg mKi n”Tzw( K )”oo

K( “W,GWK)W,GW K (I ~-W,GWK)™
(I -W,GWK)™W,GW, (I ~W,GWK)™

Subject to: rp(%{Re@i(K)),DikO

=argmin
K

(30)

9

The final controller is then implemented A&(S)K(s)Wx(s) and has no specific structure. The
quantity £=1/ ’TZW(Kopt)“ is known as the robust stability margin; usuabyue of &> 0.2

or 0.3 is considered as very satisfactory in thressehat the controlléf,,; does not significantly
alter the desired open-loop frequency responseeMe@r, this ensures robustness of the closed-
loop system to coprime factor uncertainties (Mdarae and Glover, 1992).

For loop-shaping design with PID, we adopt thetsgw introduced in Genc (2000) and
Apkarian, Bompart and Noll (2007). In this approathe controllerK is structured as

K =W, 'K, , whereKpp is a PID controller. Thus the optimization probl30) becomes:

K ;ID =arg rlppilcr;]"Tzw( K PID )||oo

= argmin |:VV1_1KPID(I _WZGKPID)_:LWZGVVL Vvl_lKPID(I _erKPm)_l}
Keo (1 _WZGKPID)_IWZGW (1 _erKPm)_l (31)
Subject ta Ar(r&a&{Re(Ai(Kp,D)),Di}<0

1 S
Kon(s) =K, +K. =+K
PID() p |S d1+?S

. K, K, K,ORY™

and the final controller is implemented &.,,W,. SinceW, is usually chosen as a low pass

filter, the resulting controller has better noigeerauation in the high frequency range than an
usual PID controller.

Application to a separating tower. We consider now the application of the HKA to twotrol
design for a chemical process described in Gengd2énd Apkarian, Bompart and Noll (2007).
It consists of a 24-tray tower for separating metthaand water. The transfer matrix model for
controlling the temperature on the 4th and 17tystia given as:

-22e> 1.3e7%*

t; 7s+1 7s+1 | W
= 32
L . } -28e™®  -43e7%% |y, (32)

95s+1 92s+1

° Note that this optimisation problem is of the fof25).



The transfer matrix (32) is approximated by a raianodel using 2nd-order Padé approximation
of the delays. This lead to a 12th-order model. Waahting matrixW, andW, are taken from
Genc (2000) and Apkarian, Bompart and Noll (2007):

B5s+2 0 10
W,(s) = s+ 0001 st | W, (s) = s+10 10 (33)
_— 0
s+ 0001 s+10

The complete system incorporating the compens@&tdterefore of 18th-order. Our objective is
to find the PID parameters = [xl,---,xm]T (-3=<x <3,i=1... 13) defined as follows:

KPID(SaX):|:X1 XZ}'[XS XG}E"'{XQ Xm}—s (34)
X3 X X, X |S [ X1 X |1+XS
K Kq

p K;

to obtain the best possible robustness margin.eincG2000) a state-space BMI (bilinear matrix
inequality) formulation has been used to charamteRID solutions of thes#, optimization
problem (31). The algorithm used to solve this f@obis a D-K iteration scheme. The author
reported 38 minutes of cputime to obtain the follugsolution:

= 006

p

{ 24719 —1.2098}

0.4657 -031 _
-11667 -24766|

0.0534 -0.0072
-02329 - 0487 ¢

- 0015 -0.0434/

The corresponding robustness margingis 1/402= 0249. In Apkarian, Bompart and Noll
(2007) the same problem was solved using a non-#nuaatimization technique. The algorithm
was initialized with the above solution and thédaing PID was found in about 1 minute:

r =0.1527

p

{ 26047 - 0.6543}

< 0.8527 -0.2591
-11253 -23226/

< 0.7414 -0.2551]
00701 -09362]

-15610 -0.0331]

The corresponding robustness margigis 1/291= 0343. This is an impressive improvement
in term of cputime and robustness margin comparebe result reported by Genc (2000). In our
case, we solved the optimization problem 15 tinl=50, N~=3 anda=0.5). The best solution
found via HKA is as follows:

7r=0.1538

p

-15979 -0.0300]

26091 -0.6952 _[0.8025 -0.2047 _
-1.1068 -24394 ' 00390 -08408 ¢

[ 0.7442 —0.2852}

The corresponding robustness margin&gss 1/293= 0341 Step responses are shown in
figures 6. The best solution was found in aboutsé@onds on 1.2 Ghz Celeron personal
computer. Note that this PID controller is verysddo the result obtained by Apkarian, Bompart
and Noll (2007). However it must be noticed that finoposed approach is very easy to use and
does not require any complicated mathematical dgon. Compared to D-K iteration or non-



smooth optimization, HKA seems to be a good altarean term

of the solutions and computation time.

of simplicity, near optimallity
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Figure 6: Step responses obtained with the HKA &dbtroller.

Design of spiral inductors on silicon
On-chip spiral inductors is an essential part of aadio frequency integrated circuit such as
voltage controlled oscillators, low-noise amplifiegtc. Consequently, the optimal design of this
kind of component is of great practical importaitescano & Lyonnet, 2012).

w

Aout

5

Figure 5: Square inductor layout.

Figure 5 shows the layout for square inductors,esother shapes can be used such as hexagonal,
octagonal, or circular. For a given shape, an itaiuis completely specified by the number of
turnsn, the turn widthw, the turn spacing, the inner diametet;,, and the outer diametds,; (see



figure 5). These parameters are typically the desigriables of the inductor. Indeed, the

inductance depends upon the geometry of the induatal so, for a desired inductance we have
to determine the values of the layout parametets. tBis is not sufficient, because at high

frequencies (i.e. in the Ghz range), some comp@itdbsses mechanisms must be taken into
account to make a realistic design.

In the sequel, we first introduce a well-accepteductor model able to take into account the
losses via parasitic resistances and capacita@cethe basis of this model, the optimal design of
an on chip inductor is realized by using quasi getimprogramming (QGP).

Inductor model

Figure 6(a) illustrates the basic structure of anpt spiral inductor on silicon. It consists of a
metal trace manufactured by low-resistivity metalsh as aluminium, copper, gold or silver. The
metal spiral is mounted on silicon dioxide layeriethacts as insulation between the metal trace
and the silicon substrate. Figure 6(a) also higitighe parasitic resistances and capacitances
which are introduced to model the losses.

Metal (Cu, AL, Au or Ag)

O
(-rOX ) RS
T Si O, Layer O
]
L |
Ry Cles I
R 3 o 00 o)
Substrate (Si)  e— Ry T Cs
O—e '
(a) Cut-away view of a gpiral inductor on silicon (b) Equivalent electrical model

Figure 6: Structure of an inductor on silicon aeduivalent electrical model.

The corresponding electrical model of the spiraluictor on silicon is presented in figure 6(b),
see the paper by Yue, Ryu, Lau, Lee & Wong 1996afdetailed derivation. This model takes
into account the parasitic resistances and capaeitaresponsible of the losses in the structure.
The inductancés, and the resistances and capacitaR$€s Rp, Cp are defined as follows:

Ls = anz(din’dout)! Rs = I<Zn(din + dout)/W1 Cs = kS,n\NZ

35
R, =2k, (n(d, +d,,)), C, = (K +k)nw(d, +d,,)/2 %)
The functionz(d;, , doy) and the constants, ks, ks, k7, ks andkg are given by:
Z(din ’ dout) = Cl(ln(cz / r) +CSr +C4r2)1 r= (dout - din) /(din + dout)/W
k =2m07’, k,=npl/(d@-€"?)), n=ctan@r/c,), J=+5%10°p/(/mv)
k3 = gox /tox,Ml—Mz ! k4 :ﬂgox /(2tox)’ kS :”Csub /2’ kG = 2/(,7Gsub) (36)

Ky =1/ kiks) + ko (K, +Ks)* 1Ky, kg =K, /(L+af (K, +K;)*k3)
Ky = k0" (K, +ks) kekg [0+ @ (K, +Ks) k)



where the parametecs, C,, Cs, C4, Cs depend upon the shape of the inductor (squaxagoaal,
octagonal or circular); the paramet@s, &y tox toxmi-mz Csub Gsup are technology dependent,
andwis the working frequency of the inductor.

The performance of an inductor is measured by uality factor Q, which is limited by the

parasitics. This quantity is defined as the ratigpeak magnetic energy minus peak electric
energy to energy dissipated in the inductor see Rya, Lau, Lee & Wong 1996:

_a, Rp@—m%j)—aﬂ_s\(cs +cp))
R R+(#f+1R

An inductor is at self-resonance when the peak m@grand electric energies are equal.
ThereforeQ vanishes to zero at the self-resonance frequegaye.:

Q 37)

Q :wwﬂs(@ +C,)=1 (38)

S

Above the self-resonance frequency, no net mageetcgy is available and thus it is generally
required thatw, > w,, , , Wherew,  is the desired minimal self-resonance frequency.

1 1
n n

Formulation of the optimization problem

For a required valuk.q of the inductance, the optimization consists itedining the values of
the layout parameters (irgw, s, doy: @andd;,) which maximizes the quality factor while ensuring
the desired minimal self-resonance frequengy, . In addition some geometry constraints must

be added such as: a minimum turn wigth, a minimum spacingyin, @ Minimum inner diameter
dinmin @nd @ maximum outer diametdy, max Which limit the inductor area. The design variable
din andd,; are not independents and are related to the dénsgn variables by the expression
d, +2(n-1)s+2nw=d,,. Sincesis typically small compared td,, d,,c andw, we can recast this

equality constraint as the inequality constramt:+ 2n(w+s) <d,,. The optimal design problem
of the inductor can then be formulated as:

minimize Q
subjectto L =L,

wsr 2 C()S m (39)
din + Z’n(W+ S) < dout

s=s, ,W=Ww,

m

d »d _ ,d.<d

in = ¥/ m  Yout o m
n i1 u a
t X

This optimization problem can be solved using,ifistance, a genetic algorithm (see section 2.2).
However, problem (39) can be also formulated a&® @roblem.



Indeed, after some basic manipulations we getat@fing equivalent problem:
minimize a
subject to af;p (“’RSLS +R + Rp)+ (C. +Cp)(%s + szs)s 1
o, L(C,+C)+R(C,+C)/L <1
L= L, (40)
din + Zn(W+ S) < dout
s=s,  ,W=WwW,_

m !
E
din -4 d1 m ! d%)ut < do m

ni u a
n r x

wherea is an additioﬁal variabld,;, R, Cs, R, andC, are given by (35). Thus formulated, the
problem (40) is QGP in the design variabdgsandd,,: and so can be efficiently solved using the
approach described in section 3.

Numerical experiments

Problem (40) has been solved using the Nelder-Msaglex methotf based QGP (NMSM-
QGP), the results thus obtained were then comparéldose obtained using a standard genetic
algorithm (GA). In our experiments, the followingrameters have been used:

c =127, ¢,=207, ¢,=018 ¢,=013 c,=4, p=2x10°Qm

t=10°m, w=3m0Cradls ¢, =345x10°F/m, t, =45x10°m
toomow, = 13x10°m, C,,=16x10°F, G, =4x10'S/m’ (41)
s, =w, =19x10°m, d,, =10"m, d, , =4x10"m

. =87x10radls Lredni’130><10‘9H. oo

The solutions found via NMSM-QGP and GA are presgim Table 9. As we can see, the result
obtained using NMSM-QGP is significantly better rthidne solution found by GA. However,
despite a small number of function evaluations ¢ihs in fact a number of GP-solver call), the
computation time is large compared to GA. Thisésduse the time cost for a GP-solver call is
generally higher than the time cost of the objecfiwnction.

Table 9.Comparison of the solutions found via GA (with298, Ns=150, p.=0.7, p,=0.07) and
NMSM-QGP (with the starting point{d 200, d,,=300).

Method n w S ¢h out L Q NbEval | CPU Time
Standard GA| 9.440 4,491 3.73 14760 309.07 29.98212, 30000 5s
NMSM-QGP | 10.862| 3.683 1.90 1115 232.82 30.00 3.2B3 47 64 S

CONCLUSIONS
It is a matter of fact that Nature has been, andhigys, a major source of inspiration for
scientific and technical developments. Optimizatimes not escape to this rule and many

9 The Nelder-Mead simplex method is available in IMatthrough the functiohni nsear ch. In this
example, the following parameters have been useithéostopping ruleTol Fun=10° andTol X=0.1,
whereTol Fun is the termination tolerance on the function vandTol X is the termination tolerance.



heuristic searches draw their foundations from ay®r biological principles such as the main
approaches reviewed in this chapter. Although they pale imitations of the reality, these
approaches have proven their efficiency in sohdif§icult optimizations problems. One of the
main purposes with this chapter was to provide dksential ideas behind each presented
optimization method as well as the algorithm anel tisually adopted parameter setting. This
could help the reader in the practical use of thmethods. In addition to the standard stochastic
algorithm, we have presented a recently developtichization method called HKA as well as an
extension of standard geometric programming, c&ll&dp.

The ability ofHKA andQGP in solving difficult non-convex problem has bedmwn on many
practical examples. In particular, we have addekse problems of robust structured control and
on-chip spiral inductor design. These topics leatbéd to non-convex constrained optimization
problems which are known to be difficult to dealttwusing conventional methods. We have
shown that stochastic methods in general and HKA@Gparticular can be used to find out, in a
straightforward manner, if not the optimal solutioat at least a suboptimal one, which is very
useful for the practitioner.
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