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Abstract. This chapter aims at solving difficult optimizatiproblems arising in many engineering areas.
To this end, a brief review of the main stochastigthods which can be used for solving continuous no
convex constrained optimization problems is presgie.: Simulated annealing (SA), Genetic algarmith
(GA), and Particle swarm optimization (PSO). Initidd to that, we will present a recently developed
optimization method called Heuristic Kalman Algbrit (HKA) which seems to be, in some cases, an
interesting alternative to the conventional appheac The stochastic methods SA, GA, PSO and HKA,
will be compared through various numerical experitae The performance of these methods depends
dramatically on the feasible search domain usefihtbout a solution as well as the initializatiohthe
various user defined parameters. From this poinviefv, some practical indications concerning these
issues will be given. Another objective of this pta is to show that the stochastic methods, nptdKlA,

can be efficiently used to solve robust synthes@blems in the area of structured control and fault
diagnosis systems. More precisely, we will dealhwttie following problems: the synthesis of a robust
controller with a given fixed structure and the igasof a robust residual generator. Some numerical
experiments exemplify the resolution of this kirfgpomoblems.
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INTRODUCTION

In all areas of engineering, physical and sociaraes, one encounters problems involving the
optimization of some objective function. Usualljzet problem to solve can be formulated
precisely but is often, difficult or impossible $olve either analytically or through conventional
numerical procedures. This is the case when thélgmro is non-convex and so inherently
nonlinear and multimodal. In fact it is now welltaslished that the frontier between the
efficiently solvable optimization problems and ththers rely on its convexity (Rockafellar,
1993). This is confirmed by the fact that very @#nt algorithms for solving convex problems
exist (Boyd & Vandenberghe, 2004), whereas the Iprolof non-convex optimization remains
largely open despite an enormous amount of effvotéd to its resolution.



In this context, several stochastic methods, addlead metaheuristics, have been developed in
the last two decades, which have demonstratedoagstability to solve problems that were
previously difficult or impossible to solve (Fog2006; Goldberg, 1989; Kennedy & Eberhart,
1995; Kirkpatrick, Gelatt & Vecchi, 1983; Spall, ). These metaheuristics include simulated
annealing (SA), genetic algorithm (GA), and paetislvarm (PS), to cite only the most used in
the framework of continuous optimization problefise main characteristic of these approaches
is the use of a stochastic mechanism for seekswjwion. From a general point of view, the use
of a stochastic search procedure seems in facbidehe in finding a promising solution of non-
convex optimization problems. Since this kind offidilt optimization problem is frequently
encountered in practice, it is very important teegan exploitable material for engineers who
have to design optimal systems. This is also taueatademic researchers who are often faced
with the challenge of solving non-convex optimirnatproblems.

With this in mind, one of the objectives of thisaglter is to give a brief review of the main
stochastic methods which can be used for solvingtimeous non-convex constrained
optimization problems i.e.: Simulated annealing (S&enetic algorithm (GA), and Particle
swarm optimization (PSO). Although a large numbleagproaches have been proposed in the
literature to improve these stochastic methods-aurvex optimization is still a challenging
subject, mainly because of very large variabilipncerning the topological properties of the
underlying objective function. For this reason,stalways useful to explore new principles
allowing the resolution of a wide range of non-cexoptimization problems. In this spirit,
another objective of this chapter is to introduceew alternative optimization method (developed
by the author), which we call Heuristic Kalman Aligom (HKA) (Toscano & Lyonnet, 2009a).
The stochastic methods SA, GA, PSO and HKA, willdoenpared through various numerical
experiments. The performance of these methods dspdramatically on the feasible search
domain used to find out a solution as well as thidalization of the various user defined
parameters. From this point of view, some practicdications concerning these issues will be
given. In particular, each optimization method vi# accompanied with its specific parameter
setting.

Another objective of this chapter is to show thneg stochastic methods, notably HKA, can be
efficiently used to solve robust synthesis probléemshe area of structured control and fault
diagnosis systems. More precisely, we will deahviite following problems: the synthesis of a
robust controller with a given fixed structure (eMJMO PID) and the design of a robust residual
generator. The main motivation for considering tkiisd of problems is that they require the
resolution of non-convex optimization problems, evhare difficult to solve via usual methods.

BACKGROUND: THE OPTIMIZATION PROBLEM

Optimization is the way of obtaining the best pblesbutcome given the degrees of freedom and
the constraints. To make our discussion more pFeciansider the general system presented in
Figure 1, which produces an output in responsegioen input. In addition, this system has some
tuning parameters allowing the modification of behaviour. By behavior we mean the
relationship existing between the inputs and owtput
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Figure 1 -An optimization problem.



The problem is then how to tune these parametethaddhe system behaves well. Usually, the
desired behavior can be formulated viaodfective functior(or cost functioh depending on the
tuning parameter§(q), which needs to be maximized or minimized witspect toq. More
formally, the problem to solve can be formulatedalews: find the optimal tuning parameters
Qopt SOlUtion of the following problem:

Qope = argmin f ()
7 ={q0D:g,(q)<0,i=1...,N.} (1)
@:{qDRn“ :gseqseq}

where f :R™ _ R is a function for which the minimuhensures that the system behaves as we
want, 'is the feasible domain i.e. the set of vedjai @ satisfying theN. constraintgy;, and

is the search domdini.e. the set under which the minimization is perfed. Generally
q=[q, - qnq]T is called thedesign(or decisior) vector, and it$\, components the decision or

design variables. The vectors= [91 g " and g =[q, - qnq]T are the bounds of the search

domain and the symbat, means a componentwise inequality. The functionabktraintsg; can
be handled by introducing a new objective functimiuding such is called penalty functions:

N¢
J(q) = f(a) + > w max(g,(q),0) @

i=1

WhereN. is the number of constraints and th&s are weighting factors. The setting of thigs is
not very critical, it is only required to penalip@re or less strongly the violation constraints.
Note that ifq satisfy the constraints theh(q) = f(q) . In these conditions solving problem (1) is

the same as solving the following optimization peo

opt =argrqgg1J(q) -
CD:{qDRn“ 10<S. 0, ﬁ}

Thus posed, the objective is then to find the optmg, i.e. then,-dimensional decision vector
gO0® which minimizes the cost functiah

Unfortunately, there are several obstacles forisglthis kind of problem. The main obstacle is
that most of the optimization problems are NP-h@drey & Johnson, 1979). Therefore the
known theoretical methods cannot be applied expegsibly for some small size problems.
Other difficulties are that the cost function mag hot differentiable and/or multimodal.
Therefore the set of methods requiring the denreatiof the cost function cannot be used.
Another obstacle is when the cost function canmogxpressed in an analytic form, in this case,
the cost function can be only evaluated throughuktions.

! Note that any maximisation problem can be convarterda minimization problem, indeed;op‘ = argmaxJ(q) = argmin- J(q)
qF qF

2 disa hyberbox and so it is also called the hypedsarch domain.



In these situations, heuristic approaches seemetdhb only way for solving optimization
problems. By heuristic approach, we mean a compuattmethod employing experimentations,
evaluations and trial-and-errors procedures in rotte obtain an approximate solution for
computationally difficult problems. In the next §ens we will review some standard heuristic
approaches for solving the optimization problem (@mely: simulated annealing (SA), genetic
algorithm (GA) and particle swarm optimization (BSQhese methods are indeed the most
widely used in the context of continuous optimiaatiwhich is the scope of this chapter. In
addition to that, we will present a recently depeld optimization method called Heuristic
Kalman Algorithm (HKA) which seems to be, in som&ses, an interesting alternative to the
conventional approaches.

STOCHASTIC METHODS FOR SOLVING HARD OPTIMIZATION PROBLEMS
1. Simulated annealing

Simulated annealing (SA) is a random optimizaticthod introduced by S. Kirkpatrick in 1983
and by V. Cerny in 1985 (Kirkpatrick, Gelatt & Vétgc1983; Cerny, 1985). The name comes
from a technique used in metallurgy, called anngaliwhich consists in heating and slowly
cooling a metal to obtain a “well ordered” solidtst of minimal energy (Dréetal., 2006). More
precisely, the annealing consists in lowering teperature graduallyn stage allowing to
obtain, at each stage, a thermal equilibrium. ghHiemperatures, atoms are very mobile, but as
the temperature decreases this mobility is dimadsand the atoms tend to form a solid structure
with lower internal energy than the initial one. &chieve a minimum-energy state, the cooling
must occur at a sufficiently slow rate. If the tesrgiure of the substance is decreased too rapidly,
an amorphous or polycrystalline structure may bmiabd which is not a minimum-energy state
of the substance.

Simulated annealing is based upon Metropolis algorithm(Metropoliset al., 1953), which
was originally proposed as a means of finding theildrium configuration of a collection of
atoms at a given temperature. The connection betwbe algorithm and mathematical
minimization was first noted by Pincus (1970), hwvas Kirkpatricket al. (1983) who proposed
that it form the basis of an optimization technidarecombinatorial problems. The approach has
been later extended to continuous global optimipatiroblems of type (3). Indeed, each pajnt
of the search spac® can be seen as a state of some physical systehtharfiunction](qg) to be
minimized would represent the internal energy ef slgstem in that state. Thus, searching for an
optimal solution is like finding a configuration d¢fie cooled system with minimum internal
energy. The aim of SA is then to bring the “systefrdim an arbitrarynitial state to a state of
minimal energy i.e. minimal. An interesting property of SA is its ability te@d getting stuck
in local minima (Coranat al. 1987). This is obtained by using a random procedutich not
only accepts changes that decrease the cost fant{iassuming a minimization problem), but
also some changes that increase it. The latteacepted in accordance with a probabilistic rule
known as théMetropolis criterion(see relation (5)). This rule depends upon a cbprameter,
which by analogy with the physical annealing is\wnas the system temperature.

1.1. Metropolis algorithm and simulated annealing

From statistical mechanic, it is known that at @egi temperaturd, the probability of finding a
system in a state of energyis given by the Boltzmann distribution

P{E = x} = k; expEx/(k.T)) 4)



wherek; >0 is a normalizing constant akglis the Boltzmann constant. It can be noticed éhat

high temperature, the system is more likely torba high-energy state than at low temperature.
Thus, asT decrease, the range of the Boltzmann distributioncentrates on states with the
lowest energy. Wherl' becomes very low, the system “freezes”, and pexidhat the
temperature has been lowered sufficiently slowlis frozen state will be of minimum energy.

It was Metropoliset al (1953) who first elaborated an algorithm basedh@ Boltzmann
distribution for finding the equilibrium configuiah of a collection of atoms at a given fixed
temperature. The principle of the Metropolis altfori is as follows. Consider a system in a
current state with energf, we generate a new state by random move on theopese

configuration and the resulting new enefgy,, is computed. IfE , <E,, then the system

remains in this new state and another new stageferated as before. On the contrary, if
E. .. 2= E, then the probability of remaining in this new st given by the so called Metropolis

new —

criterion

E.,~E,
expg ——_——= 5

If a move is rejected, we try to get another newfiguration from the last accepted
configuration. After a large number of such itevas, the system eventually reaches a state of
equilibrium for the temperaturg and the probability distribution of the accepteshfigurations
satisfy the Boltzmann distribution (4).

For optimization purposes, Kirkpatriet al. (1983) proposed to use Metropolis algorithm
(MA) together with an annealing schedule which miefi the law of decrease of the temperature
(exponential in their case). Starting from a higitial temperaturd;,;, the Metropolis algorithm
is applied until a state of equilibrium is reach€de temperature is then lowered in accordance to
the annealing schedule, and the Metropolis algorith then applied with this new temperature
until the obtention of a new equilibrium and so ©his process is repeated until a specified final
temperaturely,y is reached. As we can see, SA is a sequence ofvitAa rule of decrease of
the temperature frof,; to Tsna. If the decrease of the temperature is sufficiestibw, then the
system will reaches a state of minimum energy,esponding to the global minimum of the cost
function.

1.2. Simulated annealing algorithm

Using the principles discussed above, we can stiee optimization problem (3) via the
following general simulated annealing algorithm.

1. Choose an initial temperatuii&g,; and set the current temperatdréo Tz T =T, .

Select an initial vector parameteyand compute the corresponding cost funcli@).

2. Randomly select a new candidate solutig, in the vicinity of g, and compute the
corresponding cost functialignew).

3. Compare J(g) and J(0.n) using the Metropolis criterion (5) as follows. tLe
AJ =J3(q,.,) —J(0). Accept the new vector parametes., if AJ <0 (i.e. set

0 =0,,) - In the case wherAJ =20, a numbeu in [0,1] is drawn randomly according
to a uniform distribution. The new poigte is accepted iff <exp@J/T), whereT is



the current temperature; otherwise it is rejectedqi remains unchanged. Equivalently,
the new pointy.ewis accepted if it satisfied(q,.,) < J(q) —T log(r) .

4. Repeat steps 2 and 3 until the sequence of acceutiets have reached a state of
equilibrium.

5. The temperatur@ is lowered to a new temperaturg, in accordance with the annealing
schedule, sef =T, _, and return to step 2. This process is continugiti some stopping
rule is satisfied.

There are many way in which this algorithm can melemented. In what follows, we give
some practical rules widely used for an efficiempiementation of the simulated annealing
algorithm.

Choice of the initial temperature. The initial temperature must be chosen sufficielsttge so
that any point of the search domainhas a reasonable chance of being visited. How&veég;
is too large then a too long time is spent in destd “high energy” (i.e. high values of the cost
function). Many methods have been proposed initbature to determine the initial temperature
(see for instance Ben-Ameur, 2004). A well accepgdroach consist in computing an initial

temperature such that the acceptance ratio is gippately equal to a given valug . This can be

done as follows. Generate at randgreamples uniformly distributed i®: qi do,i=1...,n,
and choose a rate of acceptanag, then evaluate the initial temperature using:

Tt = —(AJ) ./ 109(7,) , Wwhere(AJd),,.., is defined as(AJ)

max max

=r£ig”xJ(q )—Jrglng(q ) . By the

way, we can use thg samples to select an initial decision vecias follows:q = arg]rpin J(d).
<i<np

Generation of a new candidate solution (step 2 ofhé SA algorithm). Generally, a new
candidate solutiom,ey is generated by adding a random perturbation eoctirrent solutiorg.
There are many way to do that, a common rule foticoous optimization problem is to add a

ng-dimensional Gaussian random variable to the ctrvafue g (see spall):q,.,=d+ g(Z )

whereg is a zero-mean Gaussian random vector with cavegianatrixz, which must be fixed
by the user. Another approach consists in changitgone component af at a time (Brooks &
Morgan, 1995). This is done by first selecting afighe components af at random, and then
randomly selecting a new value for that variabléhimiits bounds. In Bohachevsky et al 1986, a
spherical uniform perturbation is adopted. Morecimay, the new candidate poilfey IS

obtained by first generating a random directionteeé, with 6], =1, then multiplying it by a

fixed step sizg5, and finally summing the resulting vectordpi.e. q,, = q+ £6. The value of

the step siz¢8 must be set by the user. In a similar way oneatao adopt the following rule:
Onew = d+CU, whereU is a vector of uniform random number in the rarfgd,1) andC is a
constant diagonal matrix whose elements define rieximum change allowed in each
component ofg. The matrixC is also user defined. The methods presented ahowenot

limitative and some other approaches have beenopeapin the literature see for instance
Vanderbilt & Louie (1984), Parks (1990) to cite yal few.



Number of repetitions of the Metropolis criterion. At step 4, the repetition of the steps 2-3 is
maintained until one of the 2 following conditiosssatisfied:

- Nsacceptances
- N> Ng perturbations attempted (iM.iterations of the metropolis procedure).

where the integed andN; have to be set by the user. In Detal. (2006) the following setting
are recommendedNg =12n, and N =100n,, where n, =dim(q ) i.e. ng is the number of

parameters of the problem. Note that this setSngniy indicative and some other choices can be
adopted by the user.

Annealing schedule At step 5, the temperatufemust be lowered to a new temperatlixg, To

this end, the geometrical law of decreasg,, = AT, with A constant, is a widely accepted one,
because of its simplicity. The constahfl (0,1) is a user defined parameter which defines the
annealing schedule. Usually, is set to 0.8 or 0.9. Some other more sophisticéaevs of

decrease can be used, for a more detailed studpisiestance Dreet al. (2006) and references
therein.

Stopping rule. It is very difficult, if not impossible, to defing stopping rule which guarantees to
stop when the global minimum has been detectedhen there is a sufficiently high probability
of having reached it. Consequently, the stoppirgsrusually adopted all have a heuristic nature.
In practice, the SA algorithm is stopped when dinthe following conditions is satisfied:

- The final temperatur®; specified by the user (ed; =107°) has been reached.

- There is no improvement in the solution i.e. thenbar of consecutive rejections, exceed
a given value\; fixed by the user. Generalliy; is a multiple ofN (i.e. the number of
iterations of the metropolis procedure), for insium our applications, we have chosen:

N, =10N .

Parameter setting in brief. Table 1 summarizes the usually adopted parameteassimulated
annealing algorithm.

Table 1.Usual parameter setting of a Simulated Annealing.

Initial temperatureT,;) and starting point.,  See section “Choice ofittigal temperature”
Final temperature 010°

Rule of decrease of temperature T o =AT,withA=0.80r 0.9

Acceptance rule Metropolis criterion (see relaiib))
Maximum number of successes within gnéls = 12xdim(q)

temperatureNs)

Maximum number of tries within oneN = 100<dim(q)

temperatureN)

1.3. Advantages and disadvantages of simulated annealing

The main advantage of the SA is that it achievgead quality solution, i.e. the absolute error to
the global minimum is generally lower than thataiéd via other metaheuristics. Moreover, it is
versatile and easy to implement. The main drawbadkSA lie mainly in the choice of the

various parameters involved by this algorithm, amtigular: the initial temperature, the rule of the
decrease of the temperature, the final temperatime, maximum number of consecutive



rejections, the maximum number of tries within aeenperature, the maximum number of
successes within one temperature. The resultsnglutaire indeed very sensitive to the parameter
settings. Consequently, the problem of the seleatiothe "good parameters” (for a given cost
function) is a crucial issue, which is however get entirely solved. Another weakness of the
method, linked to the problem of parameter settisgits excessive computing time in most
applications. More detailed developments on SAh lmwactical and theoretical, can be found in
Hajec (1988), Ingber (1994), Locatelli (2000), $2003), Drecet al. (2006).

2. Genetic Algorithm

Genetic AlgorithmgGA) are a particular class of Evolutionary Aldbms (EA), also known as
Evolutionary Computation (EC). The term EC referatclass of random search methods that are
built by analogy with biological evolution, and whiimplement the principles of the Darwinian
theory ofnatural selectiorand genetics (see table 2). These kinds of metael$airly simple
and general, and thus can be used to solve a wardgerof optimization problems. This section
focuses on the most widely used method of EC éretic algorithm.

Table 2.Analogy between Biological evolution and Genetigofithm.

Biological evolution Genetic Algorithm

Individual Potential solution to a problem

Chromosome Encoding of a candidate solution

Population Set of potential solutions

Generation Iteration of the algorithm

Crossover, mutation Search operators

Natural selection Reuse of good solutions

Fitness Quiality of a solution (i.e. value of ttwest function)
Environment Problem to be solved

Genetic algorithm, is a population-based stochastiarch technique introduced by J. H.
Holland in 1962 (Holland, 1962; Holland, 1975) awbularized by D. E. Goldberg in 1989. This
approach uses a population of points containingers¢vpotential solutions, each of which is
evaluated and a new population is created fronb#st of them via randomized operators, such
asselection crossoverandmutation inspired by the natural reproduction and evohut living
creatures. The process is continued through a nuailenerations (i.e. iterations) with the aim
that the population evolves toward an acceptabigisn.

A fundamental difference between GA and the sinedannealing (SA, see section 1) is that
GA deal withpopulationsof potential solutions, dndividuals rather than with single solutions.
An interesting thing with population-based methsds intrinsic parallelism. This does not mean
that solutions evolve independently of each to mtbe the contrary, in GA these ones interact,
mix together and produce “children” that, hopefultgtains the good characteristics of their
parents.

Another peculiarity of GA is that it works not ditéy on the solution space but utilizes an
encoding of the decision variables. Usually, dedisivariables are coded as a finite-length string
over a finite alphabet. Such a string is calledabglogy to biological evolution, ghromosome
The most commonly used representation in GA istimary alphabet {0, 1} although other
representations can be used, e.g. ternary, integ@ryvalued etc. For instance, a problem with

two variablesq =[q, q2]T , may be encoded onto the following binary string:
q

10110100110:11010010101

% SP)




whereq; andqg, are coded with 12 bits, reflecting, presumablg, desired level of accuracy of
the decision variables. Examining the chromosomiagsin itself gives no information about the
problem that we want to solve. Conclusions can kevd only from the decoding of the
chromosome i.e. via a come back to the originalesgntation. The decoding step is necessary to
asses the performance,fitness of individuals member of a population. This isiddhrough an
objective function, or cost function, that charaietes the performance of an individual i.e. its
ability to be a solution of the problem that we awgéng to solve. Since the search operates on
encoding of decision variables, rather than theisitat variables themselves, any GA must
incorporate a process of encoding and decodinghias, except obviously, when real-valued
representations are adopted (Michalewicz, 1998).

2.1. The main steps of a Genetic Algorithm

As shown Figure 2, a GA starts with an initial plggion of N randomly chosen individuals in the
search space. The population siz8l is generally kept constant from generation to gegien.
At each generation (or iteration) of the GA, thikdiwing steps are performed (see also Figure 2).

1. Evaluation. The fitness of every individugj of the current population is evaluated. This
requires for each the computation of the cost functidfu).

2. Selection.On the basis of their fithess, multiple individaare randomly selected from
the current population.

3. Reproduction. The selected individuals are modified using “geneperators”, mainly
crossover and mutation, to form a new populatiohjctv will be used in the next
iteration.

This process is repeated until some stopping mileatisfied. Usually, the algorithm
terminates when either a maximum number of itenatibas been reached, or when no
further improvement is found.

Initialisation
Generate a population bf
individuals

New populatior Evaluation

For each individual, compute|
the cost function valud(q)

A

A
Reproduction Stopping rule
From the selected individuals| Satisfied? @
generate an offspring populati ausreqa:

A

=}

Selection
Based orl(g), select the best
individuals of the population

A

Figure 2 -Main steps of a GA.



2.1.1. The initialization step and the representatin of the decision variables

Initialization. The initial population of individuals is usuallgmerated at random by sampling
the search space according to a uniform distributRractically this can be done as follows. Let

q :[91 9,9, 1"andg =[q qz---qnq]T the lower bound and the upper bound, respectieély,
the decision vectorg=[q, q2---qnq]T. In other words, the search domain is the hyperbox

defined in (3):D ={qD R™ 10<. 0<%, q}. A population ofN individuals uniformly distributed
on ¢ can then be obtained as follows:

q=(@-g0U+gq, i=1--N (6)

wheren stands for componentwise produgitis thei™ individual of the population and is ang-
dimensional vector of random numbers uniformly ritisited over [0, 1]. This uniform random
sampling, ensures covering of the entire rangeossibple solutions. The population sideis a
user defined parameter. Sizes of 20-500 individaséscommon in practice. In genefdishould
be chosen proportionally to the number of decisiariables of the optimization problem, and
large enough to allow a good exploration of thedeapace. There is no rule to fix the optimal
population size but there is clear tradeoff betweemd the computation time.

Coding and decoding the variablesAs seen before, an essential aspect of GA is tbedamy of
the decision variables =[q; Oy O, ]T for performing the GA operations and the assodiate

decoding to return to the original representatidsually, decisions variables are coded as a string
to facilitate the operations performed by the GAthdugh this can be done in many ways (see
for instance Dréet al., 2006), we consider here the bit-string represimtdiecause of its wide
use in practical applications. Usually, the binapding is performed in such a way that the
minimal value of a decision variaBlg is coded by(000---0) and its maximal value is coded

by (111---1). This can be done as follows:

q =rnu{qi r_gi]with: r :c;_gli, i=1---,n, (7)

where the operator rnd(.) rounds off the argumerthé nearest intege, is the number of bit
desired for the binary representation ang the resolution (or precision) of the codinghalit

bits. The integel is then represented using the standard binargseptation(a, a, a;---a,):
_ b _inpei i
G=2,.82" i=l-.n t)

where the elements:‘aﬂj are ether 0 or 1. The complete codinggofs then obtained by the

concatenation of théa, &, a,---a):

Codingof q
Codingof g, Codingof g, Codingof Oy

3 Recall thaty is thei™ component of the vector



Inversely, the decoding oftabits representatiofia, &, a;---a;) is given by:

_ -9 iy
qi_9i+2b_1;aj2 , =1, (10)

2.1.2. The evaluation step and the fitness function

Each individual of the current population is evadahthrough a so called fitness functie(u).
By definition, better solutions have higher fitnebs the case of a maximization problem, the
fitness function is identical to the criterid(n): F(q) =J(q). For a minimization problem, the

best individuals are those which render the costtfan as small as possible; in this case the
fitness function is the inverse of the criterid{n): F(q) =1/J(q) . Note that the computation of

the fitness value requires the original represemaif the decisions variables. This is done using
the decoding rule (10) on each individual coded b#-string.

2.1.3. The selection step and its operators

At each iterationN individuals of the current population are selectedgenerate garents
population The selection of the individuals from the actp@pulation is done via a fitness-based
process, where betters solutions are more likelyetselected. Usually, the selection method is
designed so that a small proportion of less fitohs are also selected. This helps to preserve
the diversity in the population which is requirednaintain the exploration of the search domain
and thus prevents a premature convergence on pbagiosis. The most widely used selection
operators are roulette wheel selection and tournassection.

Roulette wheel selection.The individuals are drawn at random with replacetmieom the
current population with a probability that increasgi¢h their fitness. To this end, a real valued
interval [0, Z] is determined, wher& is the sum of the individuals fithess in the catre
population:

=" F(q) (11)

The individuals are then mapped to contiguous setgnien the range [0Z], such that each
individual segment is equal in size to its fithdssr instance, in Figure 3 the length of the liwe i
the sum of the seven individual's fitness. The vidlial 7 has the largest fitness value and
occupies the largest segment whereas the indiiddaland 6 are the least fit and have
correspondingly smaller segments within the line.

O 6 @6 e O
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Random number in [&]

Figure 3 -Roulette wheel selection.



The selection is performed by generating a randomber, uniformly distributed in the interval
[0, Z]; the individual whose segment spans the randombeu is selected. This process is
repeated until the desired numbers of individuglghitained. This method is similar to a roulette
wheel with each slice proportional in size to tieelss.

Tournament selection. A number N’ of individuals is chosen randomly from the current
population and the best individual from this grasigelected as parent. This process is repeated
until the desired numbers of individuals is obtdinEhe parameter for tournament selection is the
tournament siz&\l’. This parameter takes values from 2\t@.e. the population sizep detailed
study about the tournament selection can be foumdilier & Goldberg (1995).

2.1.4. The reproduction step and its operators

A repeated selection from the same population meslunothing more than copies of the
individuals originally in it with a preference fohe best ones. To hope an improvement, some
variations in the parents population must be ddhe. aim of the reproduction step is to produce
a new population from the parents that were salefttam the current population. To this end,
two kinds of operator can be used: crossover opefat recombination operator) and mutation
operator.

Crossover operator. Pairs of parents are combined to form via crossoperation two new
individuals (the childs) that inherit many charaistics of their parents. There are lots of
possibilities for defining such an operator, depegan the problem and its encoding. In the case
of a coding by bit-strings, the simplest form ie #o called one-point crossover. For each pair of
parents, the one-point crossover is performed witfiven probabilityp.. If crossover occurs, an
integerk is generated at random according to a unifornridigion between 1 and,xb-1, and

the lastnyxb-k bits of each parent are exchanged to produce iwdsg as illustrated Figure 4.

Parent11011010011(1101p0 | 1011000111110111 Child1

Parent20111110011/0101f11 | 0111010111010100 Child2

A

Randomly selected position

Figure 4 -One-point crossover operator.

The crossover probability; is a user defined parameter. Usugblyis chosen in the interval [0.5,
0.95], this mean that for a selected pair of parémére is a chance of crossover between 50 and
95%. If the crossover operation is not performbd,ttvo childs are identical to their parents. The
crossover operation can be generalized for moredha-point crossover (see Drétal, 2006).

Mutation operator. The main objective of mutation is to provide newiuiduals that cannot be
generated otherwise. This step is essential bedaldawvs the exploration of new regions where,
perhaps, good solutions can be found. This is intrest with the selection and crossover
operators which focus attention on promising regibthe search space. From this point of view,
selection and crossover operators permit the egpilmn of promising regions, whereas mutation
operator allows the exploration of new regions. SEhevo aspects, exploration and exploitation,
are essential to increase the probability of figdinglobal optimal solution.



Each individual of the population obtained via cmger is submitted to mutation with a given
probability p,. The simplest mutation operation consist of chaogsit random a position between
1 andnxb, and substituting the character in that positipratother character of the alphabet. For
instance, in the case of a bit-string represemtativze mutation is obtained simply by flipping a
randomly chosen bit (see Figure 5).

1011010011110101/1011010111110101

Randomly selected position

Figure 5 -Mutation operator.

The mutation probability,, is also a user defined parameter. This probahgitysually chosen
much lower than the crossover probability to givef@grence to the exploitation phase. Value
between 0.001 and 0.07 are common in practice.

2.1.5. The stopping rule

After the reproduction step, a new populatiorNdhdividuals is obtained, which will be used in

the next iteration of the algorithm (see figure Zhe various operations detailed above:
evaluation, selection and reproduction are theeatga until a termination condition has been
reached. There has been very few theoretical studimut when to stop a GA (Eiben &

Schoener, 2002). The usual stopping criterion fixed number of iterations, but this does not
guarantee the convergence of the algorithm totisal A more satisfying stopping rule consist
in detecting that no significant improvement wasrfd during a certain number of iteratidds.

In this way, we can stop the GA when the followaugdition is satisfied:

1 & 18 o
N_Z F(qbest(l - J)) _N_Z F(qbest(l -~ NG)) < Pen (12)
G j=1 G j=1

where p;, is the minimum level of improvement desired Na iterations, g, () is the best

individual at generatiol andi is a multiple ofNg. Possible values ofo;, and Ng are,
respectively: 0.001 and 10.

2.2. The standard genetic algorithm

Although there are many variations in implementihg GA, we present here a fairly standard
form of this algorithm.

1. (Initialisation). Randomly generate an initial populationhofndividuals: g, %,---,q"

(with N even) and evaluate the fitness functibifq'), i =1,---, N. Each individualq'
(a point in search space) is encoded, for instanteea bit-string.

2. (Parent selection).Select with replacemem parents from the current population, and
group them randomly in pairs. The parents are tmdeaccording to their fitness; the
individuals having higher fitness value being stddanore often.



3. (Reproduction: crossover).For each pair of parents, resulting of step 1l,egae a
random number uniformly in the range [0, 1]. Iff < p., then generate a uniform

random integek in the range [1nyxb-1] and exchange the.xb-k elements of each
parent to the right of elemeht If no crossover take place (i.e> p,), then form two
offsprings that are exact copies of the parents.

4. (Reproduction: mutation). For each individual resulting of step 3, genemt@ndom
numberr uniformly in the range [0, 1]. Ifr < p,,, then generate a uniform random

integerk in the range [1n,xb], and switch the elemektof the bit-string from O to 1 or
vice versa.

5. (Evaluation and stopping rule).Via a decoding rule, compute the fitness valueaifh
individual of the new population resulting of stdp Terminate the algorithm if the
stopping rule is satisfied (i.e. a maximum numbkiteration has been reached or no
further improvement is found); else go to 2.

As it is usual with stochastic algorithms, theree anany choices to do for a practical
implementation of the GA (see Spall, 2003). In jgatar: the encoding rule, the population size
(N), the probability distribution generating the iaitpopulation, the strategy for parent-selection,
the number of points-crossover, the crossover fmibtya(p:) and the mutation probability),

the stopping rule. Table 3 summarizes the choicest midely adopted in practical applications.
A more detailed study on this issue can be fourlicblmo, Lima & Michalewicz (2007).

Table 3.Parameters of a standard Genetic Algorithm.

Encoding rule Bit-string of lengthn,xb, wheren, = dim(q)
Population sizeN) 20<N <500

Probability distribution Uniform on the searclasp
Parent-selection Roulette wheel

Number of points crossover One-point crossover

Crossover probability 0.5<p.<0.95

Mutation probability 0.001< p, < 0.07

2.3. Advantages and disadvantages of GA

The main advantage of GA (and its many version#sisobustness as well as its intuitiveness,
ease of implementation, and the ability to dealcessfully with a wide range of difficult
problems. By robustness it must be understood wittjn fairly wide margins, the problem of
adjusting the parameters is not very critical. Théensitivity makes it possible to find acceptable
solutions without excessive effort. A main drawbagkh GA is that some well adapted
individuals (compared to the other members of tbpufation, but faraway from the optimum
point), dominate the population, causing it to cange on a local minimum. In these conditions,
the probability of finding better solutions is vegmall because crossover between similar
individuals, produces little changes. Only mutatiemains to seek the best individuals, but this
is generally not sufficient for a fast convergetmeard the best solution. The latter requires thus
an excessive computational time.



3. Particle Swarm Optimization (PSO)

Swarm intelligence (Sl) can be defined as the aaintelligence that is emergent from the
collective behavior of decentralized systems. Ineotwords, a certain type of intelligence can
emerge from the perpetual interaction of self-oizroh entities SI systems are generally
composed of a population of simple agents, intergdbcally with each other and with
their environment. The main feature of these systesnthat they do not have a
centralized control which imposes the behavior afheagent. Instead, each agent is
governed by its own rules and the local interactibatween them lead to the emergence
of an intelligent global behaviour, unknown to tilividual agents Due to this
interesting feature, optimization techniques irsgpiby swarm intelligence haveceived a lot

of attention during the past years, and variou$irtiggies have been proposed in the
literature Among them, the most widely used swarm intellgemlgorithm in the context of
continuous optimization is indubitably the Parti€&arm Optimization (PSO).

PSO is a relatively recent stochastic optimizatexhnique developed by J. Kennedy and R.
Eberhart in 1995. GA and PSO are similar in thessghat these two approaches are population-
based random search methods but with differentegfies of evolution. PSO draws its inspiration
from the collective behavior of living beings, inding the notion of collective intelligence of a
population of individuals (Kennedy & Eberhart, 1996 is a population based search algorithm
where each individual is callgzhrticle and represents a candidate solution. Each paeicdbes
throughthe search space seeking the optimal solutioneobftimization problem. A particieof
a swarm is characterized by its positignand its change in positiovi, called velocity. For
seeking the optimal solution, each particle utdizeo kind of information: the memory of its
own best position and the knowledge of the glotesdtiposition found by the groupThe
movement of a particle is then adjusted accordinijst velocity and the difference between its
current position, the best position found by theugrand the best position it has found so far. The
repetition of this procedure leads the swarm towardomain of the search space containing,
hopefully, high-quality solutions.

This section on PSO is organizes as follows. Iti@e@.1, the dynamic of the particle swarm
is described. Notably, the updating rule of positand change in position are presented with
some details. Section 3.2 presents a general tigofor a practical implementation of PSO, and
the standard values of the user defined paramatergiven. Finally, section 3.3 presents the
majors advantages and inconvenient of PSO.

3.1. Dynamic of the particles of a swarm

Consider a swarm dfl particles. The position of a partidléi =1---,N ), is denoted, where
q =[q qiz---qi]q]T is the ns-dimensional vector of decision variables of theirjzation
problem (3). The change in position or velocity af particlei is denotedV, where
V' =[V, V,--v, ]" is the ngdimensional vector of change in decision variablEse
change in position of a particieat iterationk+1 is defined by (k +1) = ¢ (k+1) - g (k) ; the
movemenf a particleis then governed by the equation:

q(k+D)=q (k)+v'(k+1) (13)

4in Nature, this kind of behavior can be observedaionies of insects (e.g. ants), flocks of birdsahools of fish.
5 In a minimization problem, the term “best” musturelerstood as the position with the smallest olvjestalue.



The key point lies in the manner in which the vélos modified over time. The updating rule of
velocity is done in such a way that the swarm aftiglas mimics the collective behaviour
observed on living beings. According to the obstovaof Boyd and Richardson (Boyd &
Richardson, 1985), human beings utilize two impdrteinds of information in the decision
process. The first one is their own experience,they have tried the choice and know which
state has been better so far and also how goodsit he second one is the experience of others,
i.e. the knowledge about how the other agents ardbhem have performed. By analogy with
these observations made about social behaviorsielbeity of a particleé is modified according

to its own previous best solutiphand its group's previous best solutnwith the aim to get an
improvement (i.e. in the sense of a decrease afakefunction). Hence, the updating rule of the
velocity of the particles is dependent on theirrent speed and position, the best preceding
positionp' (i.e. corresponding to the lowest cost functiprand the best positiqn, of the group:

Vi(k+1) = f(q' (k),V'(k), p', py) - The function of evolutior allowing updating the velocity of
a particle, is usually implemented as follows:

V(k+D =wk)V (k) + ¢, 0(p' -q'(K) + 4, 0 (p, —q'(K)) (14)

wherew(Kk) is known as the inertia weight; this factor idigdo reduce the growth in velocity of
the particle, more details am(k) will be provided below. In the relation (14}, and ¢, are two
random functions defined as:

¢ =cU,, ¢,=cU, (15)

WhereU; andU, are two random vectors whose components are uomifogenerated in the
range (0, 1),c; and c, are two positive constants known, respectively tresindividual (or
cognitive coefficientandsocial coefficientThese user defined coefficients are usually betia
2. The symboll stands for a componentwise vector multiplicatibime updating rule (14) shows

that the velocity of a particle is determined s/ \elocity V' (k) and the so callethdividual
andsocial parts. The individual pag, O (p' —q' (K)) , represents the tendency of the particle
to return to the best position it has visited soifhereas the social pagt, [ (p, -q (k)

represents the tendency of the particle to be catilatowards the best position found by the
swarm Blum & Li, 2008). Fgure 6 gives a geometrical interpretation of theating rule (14).

Py

o (k+1)

#:0(pg - d(K)

#0(p - d(K) V(K

q(k)

Figure 6 -Geometrical interpretation of the updating rule.



The inertia weight. The inertia coefficienw(k) J[w,,,, W,,,] is used to control the growth of

the velocity of the particles i.e. the stabilitytbe swarm. To this endy(k)| must be lower than
one. Note that a positive inertia coefficient iduoes a preference for the particle to continue
moving in the same direction it was going previgu#l progressive decreasing valuevobver
time introduces a progressive transition from esqtlary (global search) to exploitative (local
search) mode. This decrease occurs between thedbeowa, and wy, defined by the user.
Usuallyw(K) is reduced linearly according to the followinderu

W(k) :( NB'XI t er - k)(Wmax_Wmin) +Wmin (16)
Maxl| t er

whereMax| t er is the maximum number of allowed iterations. Tl Win is set about 0.3 or
0.4 andw,.is set about 0.8 or 0.9.

PSO with constriction coefficient.A variant of the updating rule (14), proposed bgr€ (Clerc
& Kennedy, 2002), uses what is calledamstriction factomotedy. With this variant, the update
of the velocity is done as follows:

Vik+1) = x[V (k) + ¢, 0(p' —q' (k) +¢, 0 (p, —q' (K))]
¢ =cU,, ¢,=cU, (17)

P 2K
2-¢-\p* -9

Note that the constriction factor corresponds #ube of a constant inertia weight(k) = y for

all k. This approach was introduced to ensure the #talnf the swarm i.e. to avoid the
divergence of the particles beyond the boundafi#iseosearch space (for more detail see Clerc &

Kenndy, 2002). With this variant, the parametetisgtusually adopted isk =1, ¢, =¢, = 205,
thus¢ = 4.1 and y = 073.

, with: g =c +c,, and ¢ >4

3.2. The standard PSO algorithm

According to the principles discussed above, westdve the optimization problem (3) using the
following algorithm.

1. (Initialisation). Set k=0. Generate an initial population ofN particles:
q(0),9°(0),---,q" (0). Generate the corresponding initial  velocities:

v (0), V2 (0),---,v" (0) . Set the local bests’s to p' =q' (0), i =1,---,N. Set the global
bestpg to p,, = argmin J(q'(0)).
<i<

2. (Swarm evolution). Set k =k +1. Update the velocity of each particle according to
Vi(k)= f(q'(k=1),v'(k=1),p', py), i =1---,N, wheref is given by (14) or (17).
Update the position of each particle usiaf(k) = q' (k—=1) +v'(k), i =1---,N..



3. (Update thep's and pg). For each particle, update the local best posittamd so far
using the following rule:If J(g' (k)) < J(p') thenp' =¢'(k), i =1---,N. Update the
global best position as followsp, = argLnirsl J(p).

4. (Stopping rule). Terminate the algorithm if the stopping rule iisfged (i.e. a maximum
number of iteration has been reached or no furthprovement is found); else go to 2.

Initialization. The initial population of particles is usually geated at random by sampling the
search space according to a uniform distributidns €an be done in a similar way as in GA, see
section 2.1.1. The initial velocities can also lemerated at random but this requires defining a
sample space. To this end we can introduce a pteailm@aundv,,. The initial velocities can then

be obtained by sampling the spa@ez{vD R™:-1lv__ < v, 1vmay\} according to a uniform

max —e
distribution. The symboll represents the unit vector ang| indicates element-by-element

inequality. The swarm sizd is a user defined parameter. Sizes of 20-150gbestare common
in practice. Concerning this parameter, the sanmgshas in GA apply (see section 2.1.1).

Stopping rule. A simple stopping criterion is to fix a maximunlcaled number of iterations
Maxl t er. This parameter is required to use a varying iaeweight (see relation (16)).
However, the use of this criterion alone cannotrgofee the convergence of the algorithm to a
solution. Instead, it is preferable to stop theodthm when no improvement is found after a
given number of iteratiofN,. To this end we can use the same stopping ruie @4\, but in our
experiments, we have found better to stop the ghgorwhen the following condition is satisfied:

The algorithm stops Wheviﬂ(pg (k) =JI(py(k—=N, ))| < Poso (18)

where k is the current iterationgeso is the minimum level of improvement desired Np
iterations, andp,(l) is the global best found at iteratibnPossible values gfeso andN, are,

respectively: 0.001 and 50.

Parameter of PSO algorithm. As in GA, there are many choices to do for a pcatt
implementation of the PSO algorithm. In particuldhe swarm size N), the probability
distributions generating the initial positions attte initial velocities, the maximal allowed
velocity, the bound of the inertia weight and itderof decrease, the cognitive factor and the
social factor. Table 4 summarizes the choices maly adopted in practical applications. The
values given in this table are only indicatives anthe variations can be required to improve the
performance. But this of course is not at all e&sydo particularly when the number of
parameters is important.

Table 4 Parameters of a standard PSO Algorithm.

Swarm sizeN) 20<N<150

Initial positions randomly (uniformly) generatiedthe search spage
Maximal velocity {may Vimax C@n be set to the maximal boundjof

Initial velocities randomly (uniformly) generat@u[-Viay Vimad"
Bounds of the inertia weightVgin, Wmay) | 0.3< Wiyin < 0.4, 0.8€ Wimax< 0.9

Rule of decrease of the inertia weight Lineanti@ax t0 Wiin

Cognitive factor ¢;) C1=2

Social factor ¢,) Co= 2




3.3. Advantages and disadvantages of PSO

The main advantage of the PSO is its ease of imgigation as well as its ability to find good

solutions much faster than other metaheuristicss (fanction evaluations). However, it cannot
improve the quality of the solutions as the numbleiterations is increased (Angeline, 1998).
Similar to the GA, an important drawback with PS®,that the swarm may prematurely
converge. This is mainly because particles convasge point which is on the line between the
global best poinpy and the personal best positignsHowever this point is not guaranteed to be
even a local optimum. Another drawback, similathe SA, is the great sensitivity of PSO to
parameter settings: a small change in parameteysreslt in a proportionally large effect

(Lovberg & Krink, 2002).

4. Heuristic Kalman Algorithm (HKA)

In this section, we introduce a recently developptimization method called Heuristic Kalman
Algorithm (HKA) (Toscano & Lyonnet, 2009). As GA a@rPSO, HKA falls into the category of
the so called “population based stochastic optitiinatechnique”. However, its principle is
entirely different to other known stochastic algfums. Indeed, HKA considers the optimization
problem as kind of learning process intended t® gim estimate of the optimum. It utilizes a
Gaussian probability density function (GPDF), a sueament process (MP) and a Kalman
estimator (KE) allowing to improve the quality dfet estimate obtained through the MP. The
GPDF evolves irthe search space seeking the optimal solution efoftimization problem. A
GPDEF is characterized by its mean vegtoand its variance matriX. For seeking the optimal
solution, the parameters of the GPDF are update@Hlipg into account sample points obtained
through a measurement process; this is done usii@lman estimator. Indeed, a Kalman
estimator can be seen as a mechanism able to upglakeowledge about unknown quantities of
interest, by taking into account new gained infdioma The “movement” of the GPDF is then
adjusted according to its current mean value arel ribw information obtained via the
measurement process. The repetition of this proeelads the GPDF toward a domain of the
search space containing, hopefully, high-qualitytians.

This section on HKA is organizes as follows. Int&et 4.1, the principle of the heuristic
Kalman algorithm is described. Notably, the updatinles of the parameters of the GPDF are
presented with some details. Section 4.2 presentgereral algorithm for a practical
implementation of HKA as well as the standard valoéthe user defined parameters. Finally,
section 4.3 presents the majors advantages anavieniznt of HKA.

4.1 Principle of the algorithm

The principle of the algorithm is shown Figure heTproposed procedure is iterative, and we
denote byk, thek" iteration of the algorithm. We have a random gatwerof probability density

function (pdf)¢(q), which produces, at each iteration a collectibiN @ectors that are distributed

about a given mean vectaxk) with a given variance-covariance matkf). This collection can
be written as follows:

a) ={ a"(k), 42(K), -+, q" (K} (19)

whered/(K) is thei"™ vector generated at the iteration numkeq' (k) =[q; (K), ---,qu (K)]", and
q (k) is thel™ component of(k) (I =1,...,n,).



Random Generatof 9() :{ qlk} = Cost Function {J(qL)} i=1
(m.z,) 30) ?

iz

(m.=,) Optimal | ¢k | Measuremen
Estimator Process

Figure 7 —Principle of the algorithm.

This random generator is applied to the cost foncli Without loss of generality, we assume
that the vectors are ordered by their increasirsg ftmction i.e.:

I(g'(k) < I(@*(K)) <+ < I(q" (k) (20)

The principle of the algorithm is to modify the mesector and the variance matrix of the
random generator until a high quality solutionegached. More precisely, I8 be the number of

considered best samples, that is such ﬂ(qtN“(k)) < J(q (k)) for all i > N, . Note that the best

samples are those of the sequence (19) which tevemallest cost function. The objective is
then to generate, from the best samples, a nevonamiistribution that approaches the minimum
of the cost functiord. The problem is how to modify the parameters efidindom generator to
achieve a reliable estimate of the optimum.

To solve this problem, we introduce a measuremeatguure followed by an optimal
estimator of the parameters of the random generdioe measurement process consists in
computing the average of the candidates that @entlre representative of the optimum. For the
iterationk, the measurement, denot&®), is then defined as follows:

Ne
HORESAC (21)
&=l

where N; is the number of considered candidates. We casidenthat this measure gives a
perturbed knowledge about the optimum, i.e.

$(K) = Qope +V(K) (22)

wherev(k) is an unknown disturbance, which is centeredign and acting on the measurement
process. Note tha(k) is the random vector between the meag(keand the unknown optimum
Qopt- In other words,v(k) is a kind of measure of our ignorance abgyt Of course, this
uncertainty cannot be measured but only estimatgdtaliing into account all available
knowledge. In our case, the uncertainty of the meas closely related to the dispersion of the

best sampleg'(k) (i =1...,N;).



Our ignorance about the optimum can thus be takEndccount by using the variance vector
associated to these best samples:

VR = | (a0 -&0) 3o, 00 -, 1) 23)
N{ i=1 i=1

In these conditions, the Kalman estimator can therused to make an estimate, so-callad “
posterior?’, of the optimum, i.e. taking into account the m@® as well as the confidence we
place in it. As seen, this confidence can be gfiadtby the variance vector (23).

Roughly speaking, a Kalman filter is an optimal usive data processing algorithm
(Maybeck, 1979). The optimality must be understasdthe best estimate which we can make
according to the model used for the measuremeepsoas well as the data used to compute this
estimate.
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Figure 8 —Conditional pdf.

To understand how a Kalman filter works, considier Eigure 8, which depicts a conditional
probability density of the value of a scalar quigntj obtained at iteratiok, conditioned on
knowledge that its measurement at the first iterais & and similarly for iterations 2 throudh
This conditional probability density function isrd#ed asj(q |&1, &, ..., &). In our problemg is
the decision variable related to a given optim@aproblem, and;, &, ..., & are the successive
measurement about the optimal vatidg. Such a conditional probability density contaitistee
available information aboul, it indicates, for the given value of all measueens taken up
through iteratiork, what the probability is thaj,; belongs to any particular range of values. The
shape of the pdf reflects the amount of uncertaigyhave in the knowledge of the valueggs.

If the pdf is a narrow peak, then the most probablees are concentrated in a narrow bang of
values. On the contrary, if the pdf is very fldten the most probable values are spread over large
range ofg, indicating a large uncertainty about the knowkedég:.
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Figure 9 —propagation of the pdf through the use of the Kalrfilter.
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The Kalman filter allows updating the pdf, measueatrafter measurement (cf. Figure 9); this
is what we call the propagation of the pdf. In thigy, we see that we start in a state of quasi
“complete ignorance” aboullyy; but, as we accumulate information through the sngament
process, we acquire more and more accurate estiobtlee optimum. Note that this corresponds
very nicely to the common learning process.

Updating rules of the Gaussian generatorOur objective is to design an optimal estimatot tha
combines a prior estimation @kpt and the measureme#dtk), so that the resulting posterior
estimate is better in the sense of a diminutiothefcost function (minimization problem). Based
on the Kalman equations, the updating rule of thesSian generator are as follows (see Toscano
& Lyonnet, (2009) for a detailed derivation):

m(k +1) = m(k) + L(k)($ (k) —m(k)) (24)
S(k+1) = (1 —a(k)L(k))Z(k)
With:
ore{s{ 7))
L(K) = Z(k)(Z(k) + D(k))*, and: a(k) = : (25)

min(l(:qz;‘;\/vi(k))zjnr_ggqx(vi(k»

whereD(K) is a diagonal matrix having in its diagonal theiance vectoW(k), vi(k) represents
thei™ component of the variance vecik) defined in (23), andry O (0,1] is given by the user

(usually a is set about 0.4 to 0.7). The coefficia(k) is used to control the decrease over time

of the variance matrix(k). This decrease ensures a progressive transiton @lobal search to
local search.



Note that all the matrices used in this formulatige. L(k), Z(k), D(K)) are diagonals.
Consequently, to save computation time we havestw al vectorial form for computing the
various quantities of interest. The vectorial fafi{24) and, (25) are given by:

m(k +1) = m(k) + diag(L(K)) O (£(k) - m(k))
diag(Z(k +1)) = diag(Z(k)) - a(k)diag(L(k)) O diag(Z(k)) (26)
diag(L(k)) = diagZ(k)) //(diag(Z(k)) +V (k))

where the symball stand for a element-by-element product and, sityjl# means a element-
by-element divide.

4.2. Algorithm

According to the principles discussed above, theimization of the objective functiod(q) (see
relation (3)) can be done according to the follayéigorithm.

1. (Initialisation). ChooseN, Nsanda. Setk =0, m(k) =m,, (k) =%,.

2. (Gaussian generator). Generate a sequence bF vectors g'(k), g*(k),---,q" (k) ,
according to a Gaussian distribution parametrizednfk) and (k).

3. (Measurement process)Using relations (21) and (23) compuf{ek) andV(k).

4. (Updating rules of the Gaussian generator)Using relations (26) update the parameter
of the Gaussian generator.

5. (Stopping rule). If the stopping rule is not satisfied go to step2erwise stop. to 2.

The practical implementation of this algorithm reggs: an appropriate initialization of the the
Gaussian distribution i.em, and Z; the selection of the user defined parameters lyainee: N,

Ns anda.; the introduction of a stopping rule. These vasiaspects are considered hereafter.

Initialization and parameter settings. The initial parameters of the Gaussian generater a
selected to cover the entire search space. Tetitisthe following rule can be used:

L+ Q.
14 o, 0 0 y=a qu
m=/: | Z,=[0 . 0| with: B , =10 27)
M, 0 0 o, UI:M
q q 6

where G (respectivelygi) is thei™ upper bound (respectively lower bound) of the higpe
search domain. With this rule, 99% of the samples generated in the intervalgs; + 30, ,

i :]_'...,nq.



We have to set the three following parameters: rthmber of pointdN, the number of best
candidatesN; and the coefficientr. To facilitate this task, table 3 summarizes trendard
parameter setting of HKA.

Table 5.Standard parameter setting of HKA.

Number of sample point®d] | 20<N< 150
Number of best candidates | 2<Ns<N
Coefficienta 0.41t00.9

Stopping rule. The algorithm stops when a given number of iteratMVaxI t er is reached
(Max1t er =300 in all our experiments) or a given accuriacycator is obtained. The latest take
into account the dispersion of tiN best points. To this end, we consider that noifsogmt
improvement can be done when tNg best points are in a ball of a given radjaga (e.g.
Puka = 0.005). More precisely, the algorithm stops when:

maX”ql -q ”2 < Prika (28)

2<i<N;

where || Eﬂz represents the Euclidean norm of its argument, q’r]d-~,qN“ are theN; best
candidate solutions.

In conclusion, the search procedure HKA is artimdaaround three main components, the
Gaussian pdf functiogi(q) (parametrized byn(k) and>(k), the measurement process and the
Kalman estimator. Sampling from the pgifg) at iterationk, creates a collection of vectayk).
This collection is then used by the measurementga® to give an information about the
optimum. Via the Kalman estimator, this informatierthen combined with the pgf(q) in order
to produce a new pdf.1(g) which will be used in the next iteratioffter a sufficient number
of iterations, the sequence of estimates (i.e.ntfi¢) thus produced leads to a near
optimal solution.

4.3. Advantages and disadvantages of HKA

HKA shares with some other stochastic algorithnesshme interesting features such as: ease of
implementation, low memory and CPU speed requirésnesearch procedure based only on the
values of the objective function, no need of strasgumptions such as linearity, differentiability,
convexity etc, to solve the optimization problemfact it could be used even when the objective
function cannot be expressed in an analytic fomthis case, the objective function is evaluated
through simulations. However, the main drawbacth&éd HKA may prematurely converge to a
local solution, notably when the coefficiemtis too high (say about 0.9). The trick is to uswe |
values of this parameter but this lead to a slowveogence of the algorithm. In fact this
parameter allows to adjust the trade off betweebajland local search.

5. Comparison

In this section, the ability of the presented mdthdo solve a wide range of non-convex
optimization problems is tested on various numémeamples, both in the unconstrained and
constrained cases. The various experiments weferperd using a 1.2 Ghz Celeron personal
computer.



5.1. Comparison of HKA with SA, GA and PSO

The optimization methods presented SA, GA, PSOHKA have been compared using a set
of benchmark functions (2 to 30 variables), whiale &isted in the Appendix Al. In our
experiments, the algorithms employed for SA, GA &®lO are adapted from the following
MatLab codesanneal . m(Vandekerckhove, 2006), Genetic Algorithm Tooll@hipperfield
et al, 1995}, andpbso. m(Devicharan, 2003).

Initialization and parameter setting. The initialization procedure as well as the par@me
setting is specific to each optimization methodbl&a6 summarizes these issues for SA, GA,
PSO and HKA. The parameters used for SA, GA and &®@ssentially those recommended in
the literature and presented in sections 1, 2,B4arNote that one of the great advantages of
HKA over other methods is its small number of pagtars, only three parameters. Indeed, the
parameters of the initial Gaussian distribution faxed by the bounds of the search space (see
Section 4).

Table 6.Initialization and parameter setting of SA, GA, P&t HKA.

Method Initialization Parameter setting
SA The starting point is determined using fiNumber of samples for the determination of fthe
method described in section 2.3.4tarting point and the initial temperaturg:4000.
method 2 i.e.

. i Rate of acceptance ahid)max: 10=0.8
Qo=arg Minai<,(J69) prance ahfmax: To

Initial  temperature: To=-(AJ)ma/IN(1),
where QAJ)maxis defined as :

Final temperature=1e-8.

Maximum number of tries within orle

i . i temperature=10lim(x
(A= My QA(Q)) - Mz, () [P ®
Rule of the decrease of the temperature] Maximum number of successes within ¢ne
temperture=12dim(x)
Tin = 08T,
GA Initial population is randomly selected in| Population size=100, One point crossover with
the hyperbox search domain given for egphobability 0.7, probability of mutation=0.07,
test function (see Appendix). Precision=16bits, binary coding.

PSO Initial positions are randomly selected|i®warm size=100, Initial inertia weight=0.8, fial
the hyperbox search domain given for epickertia weight=0.4, cognitive acceleration fadtor
test function (see Appendix). c:=2, social acceleration factm=2, Bound fof
Initial velocities are randomly selected|itte initial velocitiesm, = 4.
the interval [m,, m].

—

HKA Initial parameters of the gaussian pdf: pdamber of points N=100, Number of be
section 2.3.1, method 1. candidateN;=N/10, Slowdown coefficientt=0.7

Stopping rules. The algorithm (SA, GA, PSO or HKA) stops when aegi number of iterations
Max| t er is reachedNax! t er = 300 in all our experimerfysor a given accuracy indicator is
obtained. The latest is described for each metleoedfter.

® 7o be comparable in term of the maximum number wfcfion evaluations, the maximum number of iteratidor SA is
NoPt s* MaxI| t er, whereNbPt s is the number of points used in our experiments the population size (GA), the swarm size
(PS0), the value dfl (HKA).



SA. The SA stops when the final temperature is reachedafter 10 successive
temperature stages without any improvement (seé@®gekb).

GA. The GA stops whemp,, < 0.001 with Ng = 10 (see section 2).
PSO.The PSO stops whep,s, < 0.001 with N, = 50 (see section 3).
HKA. The HKA stops whernp,,, < 0.005 (see section 4).

Performance evaluation.To evaluate the methods efficiency, we retainedftitiowing criteria

summarizing results from 50 minimizations per fesction: the success ratio, the mean number
of iterations required to obtain a near-optimaluoh, the mean computation time and the
average error. The success ratio indicates the auwibtimes that the algorithm gives a near-
optimal solution for 50 successive runs. In ourezikpents, the near-optimal set of solutions is

defined as& ={qD@:J(q) < 1.05Jmm}, whereJn, is the known optimal solution. The mean

number of iterations, the mean computation timetaedaverage error are evaluated in relation to
only the successful minimizations (i.e. when a ragaimal solution is found).

The results of SA, GA, PSO and HKA for the testctions F1 to F9 (see Appendix Al) are
shown in Table 7. The symbol " - " mean that trgoathm has not converged to a near optimal
solution in 50 runs. This occur for SA on test filoes F4 (Rastrigin function, 5 variables), F6
(Michalevicz function 10 variables) and F7 (Levynétion, 30 variables). The same is true for
GA except for the test function F4 with howeveremyow success ratio. It is clear from Table 7
that the better results are obtained for PSO and.HK

Table 7.Comparison of SA, GA, PSO and HKA on test functidnt® F9.

Average Number of Iterations Average Error to the known global
Success Ratio (CPU Time second) optimum

SA GA PSO HKA SA GA PSO HKA SA GA PSO HKA

64 66 84 150

F1 39/50 | 46/50 | 50/50 | 5050 || 0.4) | (1.7) | (0.35) | (0.5) || 2.0e-5| 2.5e-5 | 1.0e-5| 1.0e-6
77 56 128 18

F2 50/50 | s0/50 | 50550 | 5050 || 0.7) | @.7) | (0.8) | (0.1) || 5.0e-3| 1.8e-5| 1.56-3| 2.0e-4
81 50 74 46

F3 50/50 | s0/50 | 50/50 | 5050 || (25) | (3.0) | (2.5) | (0.8) || 9.0e-4| 7.0e-6 | 2.0e-6 | 3.0e-7
197 174 34

F4 - 3/50 | 42/50 | 40/50 - (75) | 0.5 | (0.06) - 3.0e2 | 5.0e-8 | 2.0e-4
97 135 183 48

F5 4450 | 46/50 | s0/50 | 49550 || (2.3) | (7.0) | @.7) | (0.4) || 1.0e-3| 1.0e-2| 1.0e-3| 1.0e-4
259 62

F6 - - 41/50 | 43/50 - - 4.0) | (0.9 - - 2.5e-1 | 1.0e-1
295 83

F7 - - 31/50 | 48/50 - - 21.0) | (5.0) - - 6.0e-4 | 2.0e-3
87 89 166 76

F8 5/50 | 49/50 | 11/50 | 50/50 || (1.0) | (35 | (1.0) | (0.7) || 1.5e-2| 7.0e-3| 6.5e-2 | 7.0e-3
127 56 83 157

F9 16/50 | 35/50 | 50/50 | 48/50 || 25) | (2.0) | (0.6) | (0.9) || 5.0e-4| 6.0e-4 | 6.5¢-4| 7.0e-5




5.2. Comparison of HKA with other metaheuristics

In this section, we complete our numerical expentaeby comparing HKA with other
metaheuristics. These ones are either enhancedn&f SA, GA and PSO or other methods not
discussed in this chapter such as Tabu Search, Galbny Optimization or Geometric
Programming. We have not programmed the correspgndigorithms but only used the
available published results. For the details of¢hmetaheuristics such as the principle of search,
the parameter setting, the stopping rule and sih,feve refer to the cited literature. We have
considered separately the unconstrained and coreir@ases, because specific methods have
been proposed to handle constraints (notably thiemof co-evolution or the introduction of an
augmented Lagrangian). It must be noted that HKAhes same algorithm in both cases. The
constraints are handled merely by introducing agnanted cost function via penalty functions.
In all our experiments, the stopping rule and thigalization of the gaussian generator, are the
same as those described in the above section.

Unconstrained caseHKA was compared to other metaheuristics such a®ACGA, ECTS,
ESA and INTEROPT, which are listed in Table 8. Hffiiciency of HKA was tested using a set
of well known test functions (RC, B2, DJ,SS,7 Si10 and Hg), which are listed in the
Appendix A2.

Table 8.List of the methods used in our comparison.

Method Reference
Ant colony optimization for continuous domains (Ag)O|] Socha & Dorigo, (2008)
Continuous Genetic Algorithm (CGA) Chelouah & Siarry, (2000)
Enhanced Continuous Tabu Search (ECTS) Chelouah & Siarry, (1999)
Enhanced Simulated Annealing (ESA) P. Siarryet al, (1997)
INTEROPT Bilbro & Snyder, (1991)

For these experiments we performed each test fristand we compared our results with those
previously published. In all these experiments,fatlewing parameters have been used: Number
of points N = 25, Number of best candidatdls = 5, a =0.9. The experimental results are
presented in Table 9, for each test function, we dhe success ratio for 100 runs and the
corresponding average number of function evaluatittncan be seen that some results are not
available for ECTS, ESA and INTEROPT (this is iraded by the symbol " - " ). From Table 9
we can see that the better results are obtained\@dgz , CGA and HKA. The number of
evaluations produced by HKA is slightly larger ththonse produced by CGA and AQQbut its
ratio of success is better.

Table 9.Comparison of HKA with ACQ, CGA, ECTS, ESA and INTEROPT.

Success Ratio (% Average number of function evaluations
ACOgr CGA ECTS ESA INTER | HKA ACO r CGA ECTS ESA INTER | HKA
OPT OPT

RC 100 100 100 - 100 100 857 620 241 - 4172 645
B2 100 100 - - - 100 559 430 - - - 127
DJ 100 100 - - - 100 392 750 - - - 600
Sis 57 76 75 54 40 93 793 610 824§ 1137 3700 615
Sy7 79 83 80 54 60 92 748 680 910 1223 2426 646
Si10 81 81 75 50 50 93 715 650 898 1189 3463 647
Hea 100 100 100 100 100 97 722 976 1520 2688 17962 q67
Mean
values 89 92 86 65 70 97 684 674 880 1547 6205 745




Constrained case: the welded beam design problentHKA was compared to other
metaheuristics specifically designed for solvinghstoained problems. In these experiments,
HKA handles constraints via a new objective funttighich includes penalty functions (see
relation (2)).

A welded beam is designed for minimum cost subjectonstraints on shear stres§),
bending stress in the beartq), buckling load on the bdc, end deflection of the beadq), and
side constraints (Rao, 1996). There are four degigiables as shown in Figure 19{denoted
th), | (denotedy), t (denotedys) andb (denotedts), d = [0, Gp, Gs, Ga] -

Figure 10 Welded beam design problem.

The problem can be mathematically formulated devie:

Minimize  j(q) = (1+c,)¢?q, +¢,0,0, (L +0,)
Subjectto: g (q)=1(q)-71,, <0

9,(q) =0(04) =0, <0

9:(a) =, -, <0 (29)
94(q) =Ccq t Czq3q4(|— + qz) -5<0

9s(a) =Ny~ <0

96(d) =(Q) = 05ax <O

g,(aq)=P-Pc(q)<0
Where:

P MR
I,=—

V240, I
1% e %L (Gt%) % (%t
M P(L+ 2}, R \/4+( > j | 2{\/§q1q{12+( > ”} (30)

6PL 4PL° 4,013,/ g2’ /36 E
o(Q) =2, 5(q)=——0 , Po(q)= R R I S
.05 Eq4q3 L 2L \ 4G

_ q _
T(q)—\/Tf+2T1T2H;+TZZ, I, =




and:

c(g)=0.10471 c,(g)=0.04811 P=6x10°, L=14, E=3x10

(31)
G=12x10', h, =0125 4, =025 1, =136x10', o, =3x10"

The ranges of design variables aEl<q, <2, 01<q,<10, 01<q,<10, 0l1<q,<2.

This problem has been solved by Deb, (1991) usimgemetic algorithm (GA) with binary
representation, and a traditional penalty functibhas also been solved by Ragsdell & Phillips,
(1976) using geometric programming (GP). Recerltlis problem has been solved by Coello,
(2000) using a GA-based co-evolution model as wslla multi-objective genetic algorithm
(MGA) (Coello, 2002; Coello & Montes, 2002). Morecently, this problem has also been solved
by He and Wang using a co-evolutionary particlerswaptimization (CPSO) and have found a
better solution than those previously obtained &H&ang, 2007).

In this experiment we performed the minimizatiomldem 30 times and we compared our
results with those obtained via the methods listed@able 10. The following parameters have
been used: Number of poirits= 50, Number of best candidatds= 5, a = 0.3.

Table 10List of the methods used in our comparisons.
Method
Geometric Programming (GP)

Reference
Ragsdell & Phillips, 1976

Deb, 1991
Coello, 2000, 2002
Coello & Montes, 2002

Genetic Algorithm and Penalty function (GAP)
Co-Evolutionnary Genetic Algorithm (CEGA)
Multi-objective Genetic Algorithm (MGA)
Co-evolutionary Particle Swarm Optimization (CP36e & Wang, 2007

The best solutions obtained by the above-menti@mmoaches are listed in Table 11 and the
statistical results are shown in Table 12.

Table 11 Comparison of the best solution found by differeathods.

GP GAP CEGA MGA CPSO HKA
o (h) 0.245500 0.248900 0.208800 0.205986 0.202369 0.205624
o (1) 6.196000 6.173000) 3.420500 3.471328 3.544214 3.473825
s (1) 8.273000 8.178900) 8.997500 9.020224 9.048210Q 9.038561
a4 (b) 0.245500 0.253300 0.210000 0.206480) 0.205723 0.205734
g:(q) -5743.826511 -5758.603771 -0.337812 -0.074092] -12.839794 -5.62113]
02(q) -4.715097] -255.576901 -353.902604 -0.266227] -1.247467) -14.103309
0:(Q) 0.000000) -0.004400 -0.001200 -0.000495 -0.001498 -0.000115
04(Q) -3.020289 -2.982866 -3.411865 -3.430043 -3.429347 -3.432290
0s(Q) -0.120500 -0.123900 -0.083800 -0.080986 -0.079381 -0.080624
9s(9) -0.234209 -0.234160 -0.235649 -0.235514 -0.235536 -0.235550)
a:.(Q) -3604.27500 -4465.270924 -363.232384 -58.666440 -11.681359 -1.595159
J(q) 2.385937 2.433116 1.748309 1.728226 1.728024 1.7255393
Table 12 Statistical results.
Average number of
Method Best Mean Worst Std Dev function evaluations

GP 2.385937| - -

GAP 2.433116| - - - -

CEGA 1.748309 1.771973] 1.785835| 0.011220] 900000

MGA 1.728226| 1.792654] 1.993408] 0.074713 80000

CPSO 1.728024 1.748831 1.782143] 0.012926 200000

HKA 1.725539 1.725824) 1.726287 0.000172) 18600




From Table 11, it can be seen that the best feasiiltion found by HKA is better than the best
solutions found by other techniques. From Tableitl2an be seen that the average searching
quality of HKA is also significantly better thana¥e of other methods, and even the worst
solution found by HKA is better than the best solutfound via CPSO method. Note also that
the standard deviation of the results obtained KAHE very small. In addition, the number of
function evaluations is significantly lower tharole obtained by the other methods.

APPLICATION OF STOCHASTIC OPTIMIZATION TO ROBUST STRUCTURED
CONTROL AND FAULT DETECTION IN INDUSTRIAL SYSTEMS

1. Robust structured control

The problem of designing a robust controller witlgigen fixed structure (e.g. a MIMO PID)
remains an open issue (Toscano & Lyonnet, 2009k iEhmainly due to the fact that the set of
all fixed-order/structure stabilizing controllers mnon-convex and disconnected in the space of
controller parameters. This is a major source ohmatational intractability and conservatism.
Nevertheless, due to their practical importancejesapproaches for structured control have been
proposed in the literature. Most of them are basethe resolution of Linear Matrix Inequalities
LMIs. However, a major drawback with this kind gipgioaches is the use of Lyapunov variables,
whose number grows quadratically with the systera.dtor instance, if we consider a system of
order 70, this requires, at least, the introductidr2485 unknown variables whereas we are
looking for the parameters of a fixed-order/stroetaontroller which contains a comparatively
very small number of unknowns. It is then necessarintroduce new technigues capable of
dealing with the non-convexity of certain problemisimg in automatic control without
introducing extra unknown variables. We will shdvatt stochastic methods can be used to this
end.

1.1. Formulation of the optimization problem.

{21 S %—.owl}
z ! ; w
Zn<— G(g |[¢——OWn

u

—y> K(s)

Figure 11 -Block diagram of the feedback control system

Consider the general feedback setup shown in Figiiren whichG(s) represents the transfer
matrix of the process to be controlled

5J-eeli)
=G(s) |, with: G(g)=|C, | D, D, (32)
y u



andK(s) is, for instance, the transfer matrix of a PlDicoller

0 K.

B 1

K(9 =K, +K T+K, > = A B g —H‘ ~ 1K, (33)
s ‘1+15 |C. I D, : L

whereK, is the proportional gairK; andKy are the integral and derivative gains respectj\aaiy
Tis the time constant of the filter applied to texivative action. This low-pass first-order filter
ensures the properness of the PID controller ausl itls physical realizability. In addition, since
G(9) is strictly proper (i.e. it is assumed tiiat = 0), the properness of the controller ensures the
well-posedness of feedback loop.

As depicted Figure 11, the closed-loop system has external input vectors
w; O R”"‘,---,Wm OR™ andm output vectorsz, [ R™ . ..., z, 0 R™ Roughly speaking, the

global input vectow = [w; ... w,]" captures the effects of the environment on thellfaek
system; for instance noise, disturbances and mefese The global output vector [z; ... z.]"
contains all characteristics of the closed-looptesysthat are to be controlled. To this end, the

controllerK(s) utilizes the measured output vectpElR™ , to elaborate the control action vector

uOR"™ which modify the natural behavior of the procéss).

The objective is then to determine the PID pararsdlg, K, Kq, 7) allowing to satisfy some
performance specifications such as: a good sett p@Eoking, a satisfactory load disturbance
rejection, a good robustness to model uncertaiatiesso one. A powerful way to enforce these
kinds of requirements is first to formulate the fpanance specifications as an optimization
problem and then to solve it by an appropriate wekttin the &, framework, the optimization
problem can take one of the following forms:

Minmize 3, @) =[Tz (s, a=lvedk,) vedk)) vedK,) '

Subject 0: g, (q) =argmax{Re( (q)), 0i} = Ay <O
i (g

9,(0) =[T,..,(s.0)| -1, <0 (34)

9n(@) =[T,, ., (5.9, V<O
or also:
Minimize 3 (Q)=argT(%)x{Reai (q)),Di}, q=[vedK,) vedK;) vedK,) "
Subject to: gl(q):”Twlzl(S’q)”w_Vlso

(35)
9,(a) =[T,,...(5.9)|_ -y, <0

9n(®) =[T,,.., (5O, V<O

"Due to its large diffusion, we consider a PID coltr, but the described approach apply for angoftxed structure controller.



where L (s,q) denotes the closed-loop transfer matrix franto z, qO R™ is the vector of

decision variables regrouping the entries of thé&ricesK,, K, Ky, and the time constamt A(q)
denotes thé" pole of the closed-loop system asis the Laplace variable. In the formulation
(34) the constrairg,(q) is required to ensure the stability of the clekmap system. To do so, the
parameterl., must be set to a negative value.

Note that the formulations (34) and (35) are gg#meral and can be used to specify many
control objectives. For instance, the formulati@#)(includes the PID loop-shaping design
problem whereas (35) includes the single or mixeds#ivity PID control problem. In the
numerical experiments we will see some applicatibelonging to theses two kind of control
problems.

The constrained optimization problem (34) or (3a&) de transformed into an unconstrained
one, by introducing a new objective function whiobludes penalty functions (see relation (2)
and (3)).

Remark concerning the feasibility issueln many engineering problems the bounds of a lié&asi

search domain are often known a priori because #reylinked to purely material, physical
considerations. This is not so clear in controlbpem for which we have to impose a priori an
hyperbox search domain containing stabilizing aalgrs (i.e. potential solutions of the optimal
&, problem). Finding a priori such a hyperbox is miviial at all. However, for a given hyperbox

search domain it is possible, using HKA, to say tivae or not the problem is feasible. More
precisely, the feasibility problem can be statedadlews. Given the hyperbox search domain

D= {q 0O R:q <q =q, i=1---,n,} is there a stabilizing controller? This importassue
can be treated via HKA by solving the following ioization problem:

Minimize ], (q) = argmaxRe( (), 0i}

(36)
Subjectto: <g <q, | =1--,n,

wherei(q) represents thi pole f the closed-loop system. Lgtthe solution found by HKA to
the problem (36). 1,(g*) < 0, then the problem is feasible within. In the opposite case,
because of the stochastic nature of HKA, this du®secessarily mean that the problem is not
feasible (in this case we will say that the problsmrobably not feasible).

1.2. Numerical experiments

Mixed sensitivity approach. In this example, for comparison purpose, the sapignizatior?
problem as the one presented in Kim, Maruta & Suy@gie08), is considered:

Minimize J,(a) =argmax{Re(} (@)).0}, a=[q, g, g, o
(37)
Subject to: g, (q) = |Ws(s)S(s, )|, -1<0

9,(q) =W, (9)T(s,9)[,, ~1<0

8 Note that the optimization problem (37) is of tberfi (35).



where q=[q, q, g, g,]" is the vector of decision variablesjs the Laplace variabl&(s,q) is

the sensitivity function defined &s,q) = 1/(1+.(s,q)), T(s,q) is the closed-loop system defined
as T(s,0) = L(s,0)/(1+L(s,9)), L(s,g) is the open-loop transfer function defined las,q) =
G(9)K(s,g) whereG(s) is the transfer function of the system to be miled andK(s,q) is the
transfer function of the PID controller which degsmupon the decision variable as follows:

(38)

K(s,q):lo‘h(1+ 1, 10%s J

10%s 1+10% % g

Note that the relationship between the decisionaltes of the optimization problem and the
parameters of the PID controller are defined as:

K,=10% T =10%, T,=10% N=10% (39)

This is done to ensure a broader parameter spaf€,of;, T4, N). The frequency-dependent
weighting functiondNy(s) andW;(s) are set in order to meet the performance spatifics of the
closed-loop system. The optimization problem (3i&s been solved for the magnetic levitation
system described in Sugi, Simizu & Imura, (1993)e Process model is defined as:

Go) = 7.147 “0)
(s—2255)(s+20.9)(s+1399)

The frequency-dependent weighting functidiigs) andWi(s) are respectively given as:

5 43.867(s+0.066)(s+31.4)(s+88)

Ws(s) = s+ 01’ W (s) = (s+10°)2

(41)

The search space is2<q <4, -1<0,<1 -1<q¢,<1 1<q,<3. In this test, we
performed the minimization 30 times and we compasad results with those obtained via
ALPSO (Augmented Lagrangian Particle Swarm Optitiirasee Kim, Maruta & Sugie, 2008).
The following parameters have been uséd: 50,N,= 5 anda = 0.4. The best solutions obtained
via ALPSO and HKA are listed in Table 13 and ttedistical results are shown in Table 14 (the
mark "-" means that the corresponding result isavailable).

Table 13.Comparison of the best solutions found via ALPSOHIKA.

ALPSO HKA
J: 3.2548 3.2542)
(s} -0.8424 -0.8634
Oz -0.7501] -0.7493
U4 2.3137 2.3139
0:(Q) 6.1e-3 -9.6e-4
02(q) -4.0e-4 -1.2e-3
J(q) -1.7197 -1.7106




Table 14 Statistical results.

CPU time | Average number of
Method Best Mean Worst Std Dev function evaluations
ALPSO -1.7197| - - - 687 s 25000
HKA -1.7106) -1.7023 -1.6891 0.0048| 266 s 5427

The better value of the objective function obtaingth ALPSO is due to the violation of the
constraintg;(g), this is not at all the case in our solution ¥drich all constraints are satisfied.
From Table 14 we can observe that the number atifum evaluations and the related CPU time
are very small compared to ALPSO. It is interestingnote that if, as in ALPSO, a small
violation of the constraird,(q) is tolerated, we obtain the results listed inl€dlb and Table 16.

Table 15.Comparison of the best solutions found via ALPSOHIKA.

ALPSO HKA
(oH1 3.2548 3.2556
> -0.8424] -0.8354]
Os -0.7501 -0.7539
U4 2.3137| 2.3127
0:(q) 6.1le-3 4.9e-3
02(q) -4.0e-4 -2.8e-3
J(Q) -1.7197| -1.7435
Table 16.Statistical results.
CPU time | Average number of
Method Best Mean Worst Std Dev function evaluations
ALPSO -1.7197| - - - 687 s 25000
HKA -1.7435 -1.7381 -1.7323 0.0030 248s 5072

From Table 15, it can be seen that the best salfitiond by HKA is significantly better than the
solution found by ALPSO with, in addition, a smaléolation constraint. Table 16, shows that
the worst solution found by HKA is better than swution found via ALPSO, in addition, the
number of function evaluations (and so the corradpm CPU time) remains very small
compared to ALPSO.

&, norm minimization. This example is borrowed from Maruta, Kim, & Su@®008) which
utilises a PSO method for solving the following swained optimizatichproblem:

Minimize 3 (q) =|T,.(s.9),. a=[c ] 2J4

Subject to: rp(a)){Re@i (9)),Di}<0
i(q

where T, _(s,q) is the transfer matrix of the closed-loop systeomposed by the proce€xs)

and the controlleK(s) (see figure 11). In this example the controllerai first order output
feedback described by:

G| % 9
K(sd)=|0 | G s (43)
d; 1 05 Qy

o Note that the optimization problem (42) is of tberfi (34).



whereq is the decision vector which have to be set ireotd satisfy (42). The transfer matrix
G(s) of the process to be controlled is given by:

0 0 10 0 0 0 0 0 0 0 0 0 0 ]
15 -15 0 00057 15 O 0 0 0 0 0 016 08
-120 120 -06 -00344 -120 O 0 0 0 0 0 -190 -30 |(44)
-0852 029 0 -0014 -029 O 0 0 0 0 0 |-00115 -0.0087
o 0 o0 0 -073 28289 0 0 01146 0 0 0 0
o o0 o0 0 0 -125 0 0 40 0 0 0 0
| o o o 0 0 0 -1000 0 0 1024 0 0 0
6O= 5 o o 0 0 0 0 -1000 | © 0 1024 0 0
1 0 o 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
o o0 o0 0 0 0 0 0 0 0 0 001 0
o 0 o0 0 0 0 0 0 0 0 0 0 001
1 0 o 0 0 0  -1390206 0 0 1428571 0 0 0
| o 1 0 0 0 0 0 -1390206| 0 0 1428571] © 0

The objective is to find a stabilizirggwhich minimizes thes, norm of the closed-loop transfer
matrix. The search space is15<x <15 i=1...9. We performed the minimization 35 times

(N=50,N; = 2, a0 = 0.5) and we compared our results with thoseioddtain Maruta, Kim, &
Sugie (2008) . Tables 17 and 18 summarize de sesithis experiment.

Table 17 Comparison of the best solutions found via PSOHIKA.

Q. 02 Os Ga Os Qs 7 Js Qo
PSO |-21.1183 | -1.5886| 11.0822] -2.9907  0.401] -0.5268 .0® | 0.4298 | -0.9064
HKA | -33.1421 | -2.2374| 14.8739] -3.2335  0.4744 -0.67f6 588 | 05167 | -0.0761

Table 18.Statistical results (comparison between PSO and HKA

Method Best Mean Worst Std Dev CPU-time Nb iter
PSO 1.7092 1.7775 2.3732 0.0996| 650 seconds -
HKA 1.6634 1.7326 2.2377 0.0964 45 seconds 126

From Table 18, we can see that the best solutiondfidy HKA is significantly better than the
solution found in Maruta, Kim, & Sugie (2008). Tkame is true for the mean, worst and
standard deviation. In addition, the computatiometis very very small compared to PSO.

2. Robust residual generator

In this section, we introduce a simple but effextdynthesis strategy for observers based faults
detection in linear time-invariant (LTI) systemsialhare simultaneously affected by two classes
of unknown inputs: Noises having fixed spectral giggs and unknown finite energy
disturbances Khosrowjerdi, Nikoukhah & Safari-Sh@f05). The problem of designing such an
observer, also called a residual generator, wilfdvenulated as a mixedé/ &, optimization
problem. This is done to obtain an optimal residyeerator, i.e. with minimal sensitivity to
unknown inputs. Unfortunately, there is no knowtusion to this difficult optimization problem.
Finding such a residual generator is known to bepmdationally intractable via the conventional
techniques (Toscano & Lyonnet, 2009). This is nyathle to the non-convexity of the resulting
optimization problem. To solve this kind of problesasily and directly, without using any
complicated mathematical manipulations, we utibzechastic methods for the resolution of the
underlying constrained non-convex optimization peabh A numerical example is given to
illustrate the advantage of the mixéd/ ., optimization approach against existing techniques
which are based on optimization @ or &, criteria.



2.1. Formulation of the optimization problem
We assume that the system to be monitored candoeiloled by the following state space model

X(t) = AX(t) + Bu(t) + B,v(t) + B, w(t) + B, f (t)
y(t) = Cx(t) + D,u(t) + Dyv(t) + D,w(t) + D f(t) (45)
X(0) = X

where xJR™ is the state vectoyOR™ and yQ R™ are, respectively, the known input and

output vectors. The unknown inpwtJR™ represents the process/measurement noises, it is

assumed to be of fixed spectral density. The unknowut vOOR™ is assumed to be a finite
energy disturbance modelling errors caused by exage signals, linearization or parameter

uncertainties. The unknown inpdtdR"™ is the fault vector; wheh= 0, system (45) describes
the fault-free system (i.e. the normal operatingle@)o The various constant matrices of (45) are
assumed to be known and are of appropriate dimesisid must be noticed that (45) is an
augmented plant model which includes all the weightunctions reflecting the knowledge \wf
and v. The objective is to develop a residual generatbich generates, from the known
input/output (i.eu(t) andy(t)), a set of residual signai&) that are robust to unknown inputs (i.e.
v(t) andw(t)) and sensitive to the fault&). In these conditions, we can conclude that a faas
occurred if some norm aft) is larger than a prespecified threshold or if¢hare some changes
in the statistical properties of the residual sign@his objective can be reached by using an
observer-based residual generation. Consider thenfallowing Luenbeger observer-based
residual generation:

2(t) = Az(t) + B,u(t) + L(y(t) - D,u(t) - Cx(t))

r(t) = y(t) - Dyu(t) - Cz(t) (46)

z(0) = z,
where zOR™ is the state vector of the observer ahdlR™™ is the matrix gains to be

designed to ensure the stability of the observewel$ as the robustness of the residuals to
unknown inputs. Combining (45) and (46), we obtain:

&(t) = Ae(t) + Bv(t) + Bw(t) + B, f (t)
r(t) = Ce(t) + D,v(t) + D W(t) + D, f (t) (47)
e(0) = &

Wheree=x-z, A=A-LC, B,=B,-LD,, B, =B, -LD, and B, =B, -LD, . Note that

the stability of the residual generator is guaradtby ensuring that the matrid is Hurwitz.
Taking the Laplace transform of (47), we obtain:

r(s) =G,(9)& + G, (s)V(s) + G, (s)W(S) + G (s) T (s) (48)

where the transfer matric&sy(s), G(s), Gu(s) and Gi(s) are defined asG,(s) = C(sl —,&)'1,
G,(s) =G,(s)B, +D,, G, (s) =G,(s)B, + D,, and G, (s) =G,(s)B; +D; .



We want the residual insensitive to unknown inputs and initial conditsp and sensitive to
faults. The stability of the observer will ensuhe tdecay to zero of the effect of nonzero initial
conditions 5. Robustness as well as insensitivity to load distoce can be achieved by

satisfying |G, (s, L) <, with yas small as possible. However, this kind of rezpaient can
also lead to reduction of sensitivity to faults aondan increase of sensitivity to noise. Thus, in
addition to||G,(s,L)|_ <y, we have to minimize the influence of noise andrtaximize the

effect of faults. This can be done by solving thiéofving mixed 5%/ &, optimization problem:

[Gu (s L),
GV
Subject to: g,(L) = ||GV(S, L)"oo -y<0
g,(L) = argT(aB{Re@i (L)),0i}-1,,<0

Minimize  J.;,(L) =

(49)
O - qlny

L:[qij]: q:21 qZ:ny

whereL = [g;] is the matrix of decision variablej and g are the bounds of the hyperbox

search domain. In the constra@afL), the quantity}i(L) denotes th&" pole of the observer. The
parametely is used to trade off between detection perforraaral noise sensitivity.

2.2. Numerical experiments

Consider the problem of fault detection in a foamit process. The state-space process model is
given by:

[-00159 0 00419 O 00833 0
wo=| © COOLL 0 00883 .| O 00718 ...
1o 0 -00419 O 0 00479
0 0 0  -00333 00312 0
- (50)
0 0
0 0 05 0 00
+ v(t), t) = X(t) + w(t
—ooss7 o | YO [o 05 0 o} )+ W)
| 0 -00313

where the state vectar= [x; X, X; Xs] ' represents the level of water in the tanks, therobinput
u=[u; u]" is the voltage applied to the pumps; [f; f,]" is the fault vector associated to the
pumps,v = [v; ;] is the disturbance vector amd= [w; W,]" is the measurement noise vector.
The objective is to detect the actuator faulin the presence of a disturbangeand the
measurement noise. To evaluate the performance of the residual gaoera faultf; and a
disturbancey; are applied (see Figure 12).
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Figure 12 -Pump fault and disturbance

The synthesis of the mixe@%/ &, residual generator was done by solving the opétits
problem (49) via HKA. The following parameters haveen usedN=50,N; = 5, a = 0.4,

qg=-1,q=1, Amin=-0.01 andy = 0.08. Figure 13 shows the simulation result ioletd with the

resulting residual generator. This figure describes evolution of the absolute value of the
residualry(t). We can see that the effect of the disturban{® on the residual;(t) is strongly
attenuated and the effect of the fault is signiftbabigger than that of,(t). Therefore, this fault
can be easily detected by using an appropriatstibté. The ratio between the maximum values
of the effect of the fault to the maximum valuetlud effect of the disturbance is 2.6. This ratio is
only of 1.8 by using the approach proposed by Khwfardi et al. (2005). This clearly shows the
better performance of the proposed approach. Indel#d allows to solve directly the
optimisation problem (49) without using any uppeubd nor transforming the non-convex
problem into a convex one, as it is the case indihajerdiet al. (2005).
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Figure 13 -Evolution of|r,(t)|, mixed &4/ %, y = 0.08.




For comparison, Figure 14 shows the result obtawieen the residual generator is designed by
just solving the#, optimisation problem:

Lo =argmin][G,(s,L) G, (s.L)]],

o(L) = argmaxRe( (L)), 0i} = Ay, < 0 1)

Similarlely, Figure 14 shows the result obtainedust solving thes, optimisation problem

Lope = argmLin"[Gv(s, L) G,(s, L)]||w

g(L) = argmaxRe (L)), i} = Ay < 0 (52)

As we can see, the corresponding residual gensreémmot be used to detect the f#(t). This

confirms the usefulness of a mixé@/ ., synthesis.
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CONCLUSION

It is a matter of fact that Nature has been, andlwgays, a major source of inspiration for
scientific and technical developments. Optimizatidmes not escape to this rule and many
heuristic searches draw their foundations from ayor biological principles such as the main
approaches reviewed in this chapter. Although they pale imitations of the reality, these
approaches have proven their efficiency in sohdiffjcult optimizations problems. One of the
main purposes with this chapter was to provide d¢ssential ideas behind each presented
optimization method as well as the algorithm anel tisually adopted parameter setting. This
could help the reader in the practical use of thmethods. In addition to the standard stochastic
algorithm, we have presented the recently develgpichization method called HKA. This new
approach has been compared favourably with marer otletaheuristics on several test problems,
both in the unconstrained and constrained casegeNeral conclusion can be drawn from these
few numerical experiments, but it seems that, imesaases, HKA is a good alternative for
solving difficult non-convex problems.



The efficiency of stochastic methods in solvindidiflt non-convex problem has been shown
on many practical examples. Notably, we have addibghe problems of robust structured
control and fault diagnosis of industrial systeri$iese topics lead indeed to non-convex
constrained optimization problems which are knoven kte difficult to deal with using
conventional methods. Since stochastic methods doesequire strong assumptions such as
linearity, differentiability, convexity etc. theyan be used to find out, in a straightforward
manner, if not the optimal solution but at leagtuboptimal one, which is very useful for the
practitioner.

APPENDIX

Al. List of test functions F1to F9

Easom's function(F1) (2 variables):J (q) = —cos(@,) cos@,) exp((q, — 77)* + (a, — 1)?))
search domain: -108q;< 100,i = 1, 2; global minimumd, = (77 7, IJ(0p) = -1.
Goldstein-Price's function (F2) (2 variables); search domain<g < 2,i = 1, 2; global
minimum: dop:= (-1, 0),J(dop) = 3. For a complete definition of this functiogesSocha & Dorigo,
(2008).

Hartmann's function (F3) (3 variables); search domain< Q< 1,i = 1, 3; global minimum:
Qopt= (0.1146, 0.5556, 0.8525)q.,) = -3.86278. For a complete definition of thisdtion see
Socha & Dorigo, (2008).

Rastrigin's function (F4) (5 variables)

J(q) =50+ (o ~10cos@m;,))
search domain: -8 i< 3,i = 1, 5; global minimumg, = 0, J(Qop) = O.

Zakharov's function (F5) (5 variables)

@)=Y, ,a'+ (Z; 0sig, | + (Zle osiq,

search domain: -6 gi< 12,i = 1, 5; global minimumge, = 0, J(qop) = O.
Michalevicz's function (F6) (10 variables)
20
10 5 . . (ig?
J(a) = —ziﬂ(z :1sun(qi)sun(q—]'TD
search domain: 8 gi< 77i = 1, 10; global minimumi(qp) = 9.66015.

Levy's function (F7) (30 variables)

z :1+qiT_1’ i=1---30

J(q) =sin’(7z,) + Y [(z =) @+10sin* (7, +1)] + (2, 1) AL+ Sin* (2724, +1)
search domain: -18 ¢ < 10,i = 1, 30; global minimumg, = (1,1,...,1),J(Qep) = O.



Constrained test problem(F8) (3 variables)

| +0, =20, +08  4q, ~20, +q,
20, -0, +05 7, +30,

Subject to: 0,(q) =+, -0, -1<0
d,(q) =12q, +5q, +120, -34.8<0
05(0) =—6g, +q, + g, + 41<0
g,(0)=-q,+qg, -0, +1<0
0s(q) =12q, +12q9, + 70, -29.1<0

search domain: 8 ¢ < 10,i = 1, 3; global minimumag,, = (1,0,0),J(0op) = 2.471428$.

3q
Maximise J(Q) =

Constrained test problem(F9) (5 variables)
Minimise J(Q) = exp(@,9,9:9,0)
Subjectto: g (q)=qf +02+q2 +q2 +q2 -10<0
9,(0q) = 405 = 50,05 =0
g5(d) =1+¢; +q; =0

search domain: -28g < 2.3,i =1, 2;-3.2< (< 3.2,i = 3, 4, 5; global minimum:
Qop = (-1.717143, 1.595709, 1.827247, -0.7636413, 36460),J(qep ) = 0.053950.

A.2. Test functions RC, B2, DJ, S45, S4,7, Sa,10, and Hg 4

Branin's function (RC) (2 variables)
2
51 5 1
JOo)=|g,-—0a¢’' +—q-6| +10 1-— +1
(q) (qz 4]72q1+ﬂq1 j+({ 8ﬂjcosq1 0

search domain: -8 g; < 10,i = 1, 2; three global minimay, = (-77 12.275), {7 2.275), (9.42478,
2.475),J(gop9 = 0.397887.

Bohachecsky's function(B2) (2 variables)
J(q) = ¢ +2q; - 0:3cos@rm,) - 04cos@rm,) + 0.7
search domain: -108¢; < 100,i = 1, 2; global minimunt, = (0, 0),J(Cop9 = O.

De Jong's function(DJ) (3 variables)

J(a)=of +ai + a5

search domain: -8 g < 5,1 = 1, 3; global minimung, = (0, 0, 0),J(Qopy = O.

Shekel's functionsS, s, S, S5.10 (4 variables); search domain<@; < 9,i = 1, 4; 3 functions

were considered,g S;7, Si10 For a complete definition of these function seetfa & Dorigo,
(2008).

Hartmann's functions Hg 4 (6 variables); search domains@; < 1,i = 1, 6; global minimum:
J(Qop ) = -3.322368. For a complete definition of thisdtion see Socha & Dorigo, (2008).
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