
Stochastic Methods for Hard Stochastic Methods for Hard Stochastic Methods for Hard Stochastic Methods for Hard

Optimization. Application to Robust Optimization. Application to Robust Optimization. Application to Robust Optimization. Application to Robust

Fault Diagnosis and Control of Fault Diagnosis and Control of Fault Diagnosis and Control of Fault Diagnosis and Control of

Industrial SystemsIndustrial SystemsIndustrial SystemsIndustrial Systems

Rosario Toscano
Université de Lyon, Laboratoire de Tribologie et de Dynamique des Systèmes
Ecole Nationale d’Ingénieurs de Saint-Etienne, France

Abstract. This chapter aims at solving difficult optimization problems arising in many engineering areas.
To this end, a brief review of the main stochastic methods which can be used for solving continuous non-
convex constrained optimization problems is presented i.e.: Simulated annealing (SA), Genetic algorithm
(GA), and Particle swarm optimization (PSO). In addition to that, we will present a recently developed
optimization method called Heuristic Kalman Algorithm (HKA) which seems to be, in some cases, an
interesting alternative to the conventional approaches. The stochastic methods SA, GA, PSO and HKA,
will be compared through various numerical experiments. The performance of these methods depends
dramatically on the feasible search domain used to find out a solution as well as the initialization of the
various user defined parameters. From this point of view, some practical indications concerning these
issues will be given. Another objective of this chapter is to show that the stochastic methods, notably HKA,
can be efficiently used to solve robust synthesis problems in the area of structured control and fault
diagnosis systems. More precisely, we will deal with the following problems: the synthesis of a robust
controller with a given fixed structure and the design of a robust residual generator. Some numerical
experiments exemplify the resolution of this kind of problems.

Keywords. Non-convex optimization problems, stochastic optimization methods, metaheuristic, simulated
annealing, genetic algorithm, swarm intelligence, particle swarm optimization, heuristic Kalman
algorithm, parameter setting, feasible domain, robust control, fixed structure controller, PID controller,
robust H∞ control, optimal residual generator, mixed H2/H∞ optimization problem, robust fault detection.

INTRODUCTION

In all areas of engineering, physical and social sciences, one encounters problems involving the
optimization of some objective function. Usually, the problem to solve can be formulated
precisely but is often, difficult or impossible to solve either analytically or through conventional
numerical procedures. This is the case when the problem is non-convex and so inherently
nonlinear and multimodal. In fact it is now well established that the frontier between the
efficiently solvable optimization problems and the others rely on its convexity (Rockafellar,
1993). This is confirmed by the fact that very efficient algorithms for solving convex problems
exist (Boyd & Vandenberghe, 2004), whereas the problem of non-convex optimization remains
largely open despite an enormous amount of effort devoted to its resolution.

In this context, several stochastic methods, also called metaheuristics, have been developed in
the last two decades, which have demonstrated a strong ability to solve problems that were
previously difficult or impossible to solve (Fogel 2006; Goldberg, 1989; Kennedy & Eberhart,
1995; Kirkpatrick, Gelatt & Vecchi, 1983; Spall, 2003). These metaheuristics include simulated
annealing (SA), genetic algorithm (GA), and particle swarm (PS), to cite only the most used in
the framework of continuous optimization problems. The main characteristic of these approaches
is the use of a stochastic mechanism for seeking a solution. From a general point of view, the use
of a stochastic search procedure seems in fact unavoidable in finding a promising solution of non-
convex optimization problems. Since this kind of difficult optimization problem is frequently
encountered in practice, it is very important to give an exploitable material for engineers who
have to design optimal systems. This is also true for academic researchers who are often faced
with the challenge of solving non-convex optimization problems.

With this in mind, one of the objectives of this chapter is to give a brief review of the main
stochastic methods which can be used for solving continuous non-convex constrained
optimization problems i.e.: Simulated annealing (SA), Genetic algorithm (GA), and Particle
swarm optimization (PSO). Although a large number of approaches have been proposed in the
literature to improve these stochastic methods, non-convex optimization is still a challenging
subject, mainly because of very large variability concerning the topological properties of the
underlying objective function. For this reason, it is always useful to explore new principles
allowing the resolution of a wide range of non-convex optimization problems. In this spirit,
another objective of this chapter is to introduce a new alternative optimization method (developed
by the author), which we call Heuristic Kalman Algorithm (HKA) (Toscano & Lyonnet, 2009a).
The stochastic methods SA, GA, PSO and HKA, will be compared through various numerical
experiments. The performance of these methods depends dramatically on the feasible search
domain used to find out a solution as well as the initialization of the various user defined
parameters. From this point of view, some practical indications concerning these issues will be
given. In particular, each optimization method will be accompanied with its specific parameter
setting.

Another objective of this chapter is to show that the stochastic methods, notably HKA, can be
efficiently used to solve robust synthesis problems in the area of structured control and fault
diagnosis systems. More precisely, we will deal with the following problems: the synthesis of a
robust controller with a given fixed structure (e.g. MIMO PID) and the design of a robust residual
generator. The main motivation for considering this kind of problems is that they require the
resolution of non-convex optimization problems, which are difficult to solve via usual methods.

BACKGROUND: THE OPTIMIZATION PROBLEM

Optimization is the way of obtaining the best possible outcome given the degrees of freedom and
the constraints. To make our discussion more precise, consider the general system presented in
Figure 1, which produces an output in response to a given input. In addition, this system has some
tuning parameters allowing the modification of its behaviour. By behavior we mean the
relationship existing between the inputs and outputs.

Inputs Outputs
System

Tuning parameters q
Figure 1 – An optimization problem.

The problem is then how to tune these parameters so that the system behaves well. Usually, the
desired behavior can be formulated via an objective function (or cost function) depending on the
tuning parameters f(q), which needs to be maximized or minimized with respect to q. More
formally, the problem to solve can be formulated as follows: find the optimal tuning parameters
qopt, solution of the following problem:

{ }
{ }









≤≤∈=

=≤∈=

=
∈

qqqq

Niqgq

qfq

ee
n

ci

q
opt

q :

,,1,0)(:

)(minarg

RD

DF

F

K (1)

where RR →qn
f : is a function for which the minimum1 ensures that the system behaves as we

want, F is the feasible domain i.e. the set of vector D∈q satisfying the Nc constraints gi, and D
is the search domain2 i.e. the set under which the minimization is performed. Generally

T
nq

qqq][1 L= is called the design (or decision) vector, and its nq components the decision or

design variables. The vectors T

nq

qqq][
1
L= and T

nq
qqq][1 L= are the bounds of the search

domain and the symbol e≤ means a componentwise inequality. The functional constraints gi can

be handled by introducing a new objective function including such is called penalty functions:

∑
=

+=
cN

i
ii qgwqfqJ

1

)0),(max()()((2)

Where Nc is the number of constraints and the wi’s are weighting factors. The setting of the wi’s is
not very critical, it is only required to penalize more or less strongly the violation constraints.
Note that if q satisfy the constraints then)()(qfqJ = . In these conditions solving problem (1) is
the same as solving the following optimization problem:

{ }





≤≤∈=

=
∈

qqqq

qJq

ee
n

q
opt

q :

)(minarg

RD

D
 (3)

Thus posed, the objective is then to find the optimum qopt i.e. the nq-dimensional decision vector

D∈q which minimizes the cost function J.
Unfortunately, there are several obstacles for solving this kind of problem. The main obstacle is

that most of the optimization problems are NP-hard (Garey & Johnson, 1979). Therefore the
known theoretical methods cannot be applied except possibly for some small size problems.
Other difficulties are that the cost function may be not differentiable and/or multimodal.
Therefore the set of methods requiring the derivatives of the cost function cannot be used.
Another obstacle is when the cost function cannot be expressed in an analytic form, in this case,
the cost function can be only evaluated through simulations.

1 Note that any maximisation problem can be converted into a minimization problem, indeed:)(minarg)(maxarg qJqJq

qqopt
−==

∈∈ FF

2 D is a hyberbox and so it is also called the hyperbox search domain.

In these situations, heuristic approaches seem to be the only way for solving optimization
problems. By heuristic approach, we mean a computational method employing experimentations,
evaluations and trial-and-errors procedures in order to obtain an approximate solution for
computationally difficult problems. In the next sections we will review some standard heuristic
approaches for solving the optimization problem (3), namely: simulated annealing (SA), genetic
algorithm (GA) and particle swarm optimization (PSO). These methods are indeed the most
widely used in the context of continuous optimization which is the scope of this chapter. In
addition to that, we will present a recently developed optimization method called Heuristic
Kalman Algorithm (HKA) which seems to be, in some cases, an interesting alternative to the
conventional approaches.

STOCHASTIC METHODS FOR SOLVING HARD OPTIMIZATION PROBLEMS

1. Simulated annealing

Simulated annealing (SA) is a random optimization method introduced by S. Kirkpatrick in 1983
and by V. Cerný in 1985 (Kirkpatrick, Gelatt & Vecchi, 1983; Cerny, 1985). The name comes
from a technique used in metallurgy, called annealing, which consists in heating and slowly
cooling a metal to obtain a “well ordered” solid state of minimal energy (Dréo et al., 2006). More
precisely, the annealing consists in lowering the temperature gradually, in stage, allowing to
obtain, at each stage, a thermal equilibrium. At high temperatures, atoms are very mobile, but as
the temperature decreases this mobility is diminished and the atoms tend to form a solid structure
with lower internal energy than the initial one. To achieve a minimum-energy state, the cooling
must occur at a sufficiently slow rate. If the temperature of the substance is decreased too rapidly,
an amorphous or polycrystalline structure may be obtained which is not a minimum-energy state
of the substance.

Simulated annealing is based upon the Metropolis algorithm (Metropolis et al., 1953), which
was originally proposed as a means of finding the equilibrium configuration of a collection of
atoms at a given temperature. The connection between this algorithm and mathematical
minimization was first noted by Pincus (1970), but it was Kirkpatrick et al. (1983) who proposed
that it form the basis of an optimization technique for combinatorial problems. The approach has
been later extended to continuous global optimization problems of type (3). Indeed, each point q
of the search space D can be seen as a state of some physical system, and the function J(q) to be
minimized would represent the internal energy of the system in that state. Thus, searching for an
optimal solution is like finding a configuration of the cooled system with minimum internal
energy. The aim of SA is then to bring the “system”, from an arbitrary initial state, to a state of
minimal energy i.e. minimal J. An interesting property of SA is its ability to avoid getting stuck
in local minima (Corana et al. 1987). This is obtained by using a random procedure which not
only accepts changes that decrease the cost function J (assuming a minimization problem), but
also some changes that increase it. The latter are accepted in accordance with a probabilistic rule
known as the Metropolis criterion (see relation (5)). This rule depends upon a control parameter,
which by analogy with the physical annealing is known as the system temperature.

1.1. Metropolis algorithm and simulated annealing

From statistical mechanic, it is known that at a given temperature T, the probability of finding a
system in a state of energy E is given by the Boltzmann distribution

{ }))/(exp(Pr TkxkxE bT −== (4)

where 0>Tk is a normalizing constant and kb is the Boltzmann constant. It can be noticed that at
high temperature, the system is more likely to be in a high-energy state than at low temperature.
Thus, as T decrease, the range of the Boltzmann distribution concentrates on states with the
lowest energy. When T becomes very low, the system “freezes”, and provided that the
temperature has been lowered sufficiently slowly, this frozen state will be of minimum energy.

It was Metropolis et al. (1953) who first elaborated an algorithm based on the Boltzmann
distribution for finding the equilibrium configuration of a collection of atoms at a given fixed
temperature. The principle of the Metropolis algorithm is as follows. Consider a system in a
current state with energy E0, we generate a new state by random move on the previous
configuration and the resulting new energy Enew is computed. If 0EEnew < , then the system

remains in this new state and another new state is generated as before. On the contrary, if

0EEnew ≥ then the probability of remaining in this new state is given by the so called Metropolis

criterion








 −−
Tk

EE

b

new 0exp (5)

If a move is rejected, we try to get another new configuration from the last accepted
configuration. After a large number of such iterations, the system eventually reaches a state of
equilibrium for the temperature T, and the probability distribution of the accepted configurations
satisfy the Boltzmann distribution (4).

For optimization purposes, Kirkpatrick et al. (1983) proposed to use Metropolis algorithm
(MA) together with an annealing schedule which defines the law of decrease of the temperature
(exponential in their case). Starting from a high initial temperature Tinit, the Metropolis algorithm
is applied until a state of equilibrium is reached. The temperature is then lowered in accordance to
the annealing schedule, and the Metropolis algorithm is then applied with this new temperature
until the obtention of a new equilibrium and so on. This process is repeated until a specified final
temperature Tfinal is reached. As we can see, SA is a sequence of MA with a rule of decrease of
the temperature from Tinit to Tfinal. If the decrease of the temperature is sufficiently slow, then the
system will reaches a state of minimum energy, corresponding to the global minimum of the cost
function.

1.2. Simulated annealing algorithm

Using the principles discussed above, we can solve the optimization problem (3) via the
following general simulated annealing algorithm.

1. Choose an initial temperature Tinit and set the current temperature T to Tinit: initTT = .

Select an initial vector parameters q and compute the corresponding cost function J(q).

2. Randomly select a new candidate solution qnew in the vicinity of q, and compute the

corresponding cost function J(qnew).

3. Compare J(q) and J(qnew) using the Metropolis criterion (5) as follows. Let
)()(qJqJJ new −=∆ . Accept the new vector parameters qnew if 0<∆J (i.e. set

newqq =) . In the case where 0≥∆J , a number u in]1,0[is drawn randomly according

to a uniform distribution. The new point qnew is accepted if)/exp(TJr ∆≤ , where T is

the current temperature; otherwise it is rejected i.e. q remains unchanged. Equivalently,
the new point qnew is accepted if it satisfies)log()()(rTqJqJ new −≤ .

4. Repeat steps 2 and 3 until the sequence of accepted points have reached a state of

equilibrium.

5. The temperature T is lowered to a new temperature Tnew in accordance with the annealing

schedule, set newTT = and return to step 2. This process is continued until some stopping

rule is satisfied.

There are many way in which this algorithm can be implemented. In what follows, we give
some practical rules widely used for an efficient implementation of the simulated annealing
algorithm.

Choice of the initial temperature. The initial temperature must be chosen sufficiently large so
that any point of the search domain D has a reasonable chance of being visited. However, if Tinit
is too large then a too long time is spent in a state of “high energy” (i.e. high values of the cost
function). Many methods have been proposed in the literature to determine the initial temperature
(see for instance Ben-Ameur, 2004). A well accepted approach consist in computing an initial
temperature such that the acceptance ratio is approximately equal to a given value 0τ . This can be

done as follows. Generate at random η samples uniformly distributed in D : D∈iq , η,,1K=i ,

and choose a rate of acceptance 0τ , then evaluate the initial temperature using:

)log(/)(0τmaxinit JT ∆−= , where maxJ)(∆ is defined as:)(min)(max)(
11

i

i

i

i
max qJqJJ

ηη ≤≤≤≤
−=∆ . By the

way, we can use the η samples to select an initial decision vector q as follows:)(minarg
1

i

i
qJq

η≤≤
= .

Generation of a new candidate solution (step 2 of the SA algorithm). Generally, a new
candidate solution qnew is generated by adding a random perturbation to the current solution q.
There are many way to do that, a common rule for continuous optimization problem is to add a
nq-dimensional Gaussian random variable to the current value q (see spall):)(Σ+= gqqnew ,

where g is a zero-mean Gaussian random vector with covariance matrix Σ, which must be fixed
by the user. Another approach consists in changing only one component of q at a time (Brooks &
Morgan, 1995). This is done by first selecting one of the components of q at random, and then
randomly selecting a new value for that variable within its bounds. In Bohachevsky et al 1986, a
spherical uniform perturbation is adopted. More precisely, the new candidate point qnew is

obtained by first generating a random direction vector θ, with 1
2

=θ , then multiplying it by a

fixed step size β, and finally summing the resulting vector to q, i.e. βθ+= qqnew . The value of

the step size β must be set by the user. In a similar way one can also adopt the following rule:
CUqqnew += , where U is a vector of uniform random number in the range)1,1(− and C is a

constant diagonal matrix whose elements define the maximum change allowed in each
component of q. The matrix C is also user defined. The methods presented above are not
limitative and some other approaches have been proposed in the literature see for instance
Vanderbilt & Louie (1984), Parks (1990) to cite only a few.

Number of repetitions of the Metropolis criterion. At step 4, the repetition of the steps 2-3 is
maintained until one of the 2 following conditions is satisfied:

- Ns acceptances
- SNN > perturbations attempted (i.e. N iterations of the metropolis procedure).

where the integers N and Ns have to be set by the user. In Dreo et al. (2006) the following setting
are recommended qS nN 12= and qnN 100= , where)dim(qnq = , i.e. nq is the number of

parameters of the problem. Note that this setting is only indicative and some other choices can be
adopted by the user.

Annealing schedule. At step 5, the temperature T must be lowered to a new temperature Tnew. To
this end, the geometrical law of decrease: TTnew λ= , with λ constant, is a widely accepted one,

because of its simplicity. The constant)1,0(∈λ is a user defined parameter which defines the

annealing schedule. Usually, λ is set to 0.8 or 0.9. Some other more sophisticated laws of
decrease can be used, for a more detailed study see for instance Dreo et al. (2006) and references
therein.

Stopping rule. It is very difficult, if not impossible, to define a stopping rule which guarantees to
stop when the global minimum has been detected, or when there is a sufficiently high probability
of having reached it. Consequently, the stopping rules usually adopted all have a heuristic nature.
In practice, the SA algorithm is stopped when one of the following conditions is satisfied:

- The final temperature Tf specified by the user (eg. 810−=fT) has been reached.

- There is no improvement in the solution i.e. the number of consecutive rejections, exceed
a given value Nf fixed by the user. Generally, Nf is a multiple of N (i.e. the number of
iterations of the metropolis procedure), for instance in our applications, we have chosen:

NN f 10= .

Parameter setting in brief. Table 1 summarizes the usually adopted parameters of a simulated
annealing algorithm.

Table 1. Usual parameter setting of a Simulated Annealing.
 Initial temperature (Tinit) and starting point. See section “Choice of the initial temperature”
 Final temperature ∼ 10-8
 Rule of decrease of temperature TTnew λ= , with λ = 0.8 or 0.9

 Acceptance rule Metropolis criterion (see relation (5))
 Maximum number of successes within one
temperature (NS)

 NS = 12×dim(q)

 Maximum number of tries within one
temperature (N)

 N = 100×dim(q)

1.3. Advantages and disadvantages of simulated annealing

The main advantage of the SA is that it achieves a good quality solution, i.e. the absolute error to
the global minimum is generally lower than that obtained via other metaheuristics. Moreover, it is
versatile and easy to implement. The main drawbacks of SA lie mainly in the choice of the
various parameters involved by this algorithm, in particular: the initial temperature, the rule of the
decrease of the temperature, the final temperature, the maximum number of consecutive

rejections, the maximum number of tries within one temperature, the maximum number of
successes within one temperature. The results obtained are indeed very sensitive to the parameter
settings. Consequently, the problem of the selection of the "good parameters" (for a given cost
function) is a crucial issue, which is however not yet entirely solved. Another weakness of the
method, linked to the problem of parameter setting, is its excessive computing time in most
applications. More detailed developments on SA, both practical and theoretical, can be found in
Hajec (1988), Ingber (1994), Locatelli (2000), Spall (2003), Dreo et al. (2006).

2. Genetic Algorithm

Genetic Algorithms (GA) are a particular class of Evolutionary Algorithms (EA), also known as
Evolutionary Computation (EC). The term EC refers to a class of random search methods that are
built by analogy with biological evolution, and which implement the principles of the Darwinian
theory of natural selection and genetics (see table 2). These kinds of methods are fairly simple
and general, and thus can be used to solve a wide range of optimization problems. This section
focuses on the most widely used method of EC i.e. genetic algorithm.

Table 2. Analogy between Biological evolution and Genetic Algorithm.

Biological evolution Genetic Algorithm
 Individual Potential solution to a problem
 Chromosome Encoding of a candidate solution
 Population Set of potential solutions
 Generation Iteration of the algorithm
 Crossover, mutation Search operators
 Natural selection Reuse of good solutions
 Fitness Quality of a solution (i.e. value of the cost function)
 Environment Problem to be solved

Genetic algorithm, is a population-based stochastic search technique introduced by J. H.
Holland in 1962 (Holland, 1962; Holland, 1975) and popularized by D. E. Goldberg in 1989. This
approach uses a population of points containing several potential solutions, each of which is
evaluated and a new population is created from the best of them via randomized operators, such
as selection, crossover and mutation, inspired by the natural reproduction and evolution of living
creatures. The process is continued through a number of generations (i.e. iterations) with the aim
that the population evolves toward an acceptable solution.

A fundamental difference between GA and the simulated annealing (SA, see section 1) is that
GA deal with populations of potential solutions, or individuals, rather than with single solutions.
An interesting thing with population-based method is its intrinsic parallelism. This does not mean
that solutions evolve independently of each to other, on the contrary, in GA these ones interact,
mix together and produce “children” that, hopefully, retains the good characteristics of their
parents.

Another peculiarity of GA is that it works not directly on the solution space but utilizes an
encoding of the decision variables. Usually, decisions variables are coded as a finite-length string
over a finite alphabet. Such a string is called, by analogy to biological evolution, a chromosome.
The most commonly used representation in GA is the binary alphabet {0, 1} although other
representations can be used, e.g. ternary, integer, real-valued etc. For instance, a problem with

two variables Tqqq][21= , may be encoded onto the following binary string:

44444 844444 76

44 344 21M44 344 21

q

qq 21

011101001011101011010011

where q1 and q2 are coded with 12 bits, reflecting, presumably, the desired level of accuracy of
the decision variables. Examining the chromosome string in itself gives no information about the
problem that we want to solve. Conclusions can be drawn only from the decoding of the
chromosome i.e. via a come back to the original representation. The decoding step is necessary to
asses the performance, or fitness, of individuals member of a population. This is done through an
objective function, or cost function, that characterizes the performance of an individual i.e. its
ability to be a solution of the problem that we are trying to solve. Since the search operates on
encoding of decision variables, rather than the decision variables themselves, any GA must
incorporate a process of encoding and decoding variables, except obviously, when real-valued
representations are adopted (Michalewicz, 1998).

2.1. The main steps of a Genetic Algorithm

As shown Figure 2, a GA starts with an initial population of N randomly chosen individuals in the
search space D. The population size N is generally kept constant from generation to generation.
At each generation (or iteration) of the GA, the following steps are performed (see also Figure 2).

1. Evaluation. The fitness of every individual q of the current population is evaluated. This
requires for each q the computation of the cost function J(q).

2. Selection. On the basis of their fitness, multiple individuals are randomly selected from

the current population.

3. Reproduction. The selected individuals are modified using “genetic operators”, mainly
crossover and mutation, to form a new population, which will be used in the next
iteration.

This process is repeated until some stopping rule is satisfied. Usually, the algorithm
terminates when either a maximum number of iterations has been reached, or when no
further improvement is found.

Figure 2 – Main steps of a GA.

Initialisation
Generate a population of N

individuals

Evaluation
For each individual, compute
the cost function value J(q)

Selection
Based on J(q), select the best
individuals of the population

Reproduction
From the selected individuals,

generate an offspring population

Stopping rule
Satisfied? End

New population

2.1.1. The initialization step and the representation of the decision variables

Initialization. The initial population of individuals is usually generated at random by sampling
the search space according to a uniform distribution. Practically this can be done as follows. Let

T

nq

qqqq][
21
L= and T

nq
qqqq][21 L= the lower bound and the upper bound, respectively, of

the decision vector T
nq

qqqq][21 L= . In other words, the search domain is the hyperbox

defined in (3): { }qqqq ee
nq ≤≤∈= :RD . A population of N individuals uniformly distributed

on D can then be obtained as follows:

NiqUqqqi ,,1,)(L=+⊗−= (6)

where ⊗ stands for componentwise product, qi is the i th individual of the population and U is a nq-
dimensional vector of random numbers uniformly distributed over [0, 1]. This uniform random
sampling, ensures covering of the entire range of possible solutions. The population size N is a
user defined parameter. Sizes of 20-500 individuals are common in practice. In general, N should
be chosen proportionally to the number of decision variables of the optimization problem, and
large enough to allow a good exploration of the search space. There is no rule to fix the optimal
population size but there is clear tradeoff between N and the computation time.

Coding and decoding the variables. As seen before, an essential aspect of GA is the encoding of

the decision variables Tqqqq
qn][21 L= for performing the GA operations and the associated

decoding to return to the original representation. Usually, decisions variables are coded as a string
to facilitate the operations performed by the GA. Although this can be done in many ways (see
for instance Dréo et al., 2006), we consider here the bit-string representation because of its wide
use in practical applications. Usually, the binary coding is performed in such a way that the
minimal value of a decision variable3 qi is coded by)0000(L and its maximal value is coded

by)1111(L . This can be done as follows:








 −
=

i

ii

i r

qq
q rnd
)

, with: qb
ii

i ni
qq

r ,,1,
12

L=
−

−
= (7)

where the operator rnd(.) rounds off the argument to the nearest integer, b is the number of bit
desired for the binary representation and r i is the resolution (or precision) of the coding with b

bits. The integer iq
)

 is then represented using the standard binary representation)(321
i
b

iii aaaa L :

q

b

j

jbi
ji niaq ,,1,2

1
L

) ==∑ =
− (8)

where the elements ija are ether 0 or 1. The complete coding of q is then obtained by the

concatenation of the)(321
i
b

iii aaaa L :

)(

 of Coding

 of Coding

321

 of Coding

22
3

2
2

2
1

 of Coding

11
3

1
2

1
1

21

4444444444 84444444444 76

44 344 21
LL

4434421
L

4434421
L

q

q

n
b

nnn

q

b

q

b

qn

qqqq aaaaaaaaaaaa (9)

3 Recall that qi is the ith component of the vector q.

Inversely, the decoding of a b-bits representation)(321
i
b

iii aaaa L is given by:

q

b

j

jbi
jb

ii

ii nia
qq

qq ,,1,2
12 1

L=
−

−
+= ∑

=

− (10)

2.1.2. The evaluation step and the fitness function

Each individual of the current population is evaluated through a so called fitness function F(q).
By definition, better solutions have higher fitness. In the case of a maximization problem, the
fitness function is identical to the criterion J(q):)()(qJqF = . For a minimization problem, the
best individuals are those which render the cost function as small as possible; in this case the
fitness function is the inverse of the criterion J(q):)(/1)(qJqF = . Note that the computation of
the fitness value requires the original representation of the decisions variables. This is done using
the decoding rule (10) on each individual coded as a bit-string.

2.1.3. The selection step and its operators

At each iteration, N individuals of the current population are selected to generate a parents
population. The selection of the individuals from the actual population is done via a fitness-based
process, where betters solutions are more likely to be selected. Usually, the selection method is
designed so that a small proportion of less fit solutions are also selected. This helps to preserve
the diversity in the population which is required to maintain the exploration of the search domain
and thus prevents a premature convergence on poor solutions. The most widely used selection
operators are roulette wheel selection and tournament selection.

Roulette wheel selection. The individuals are drawn at random with replacement from the
current population with a probability that increase with their fitness. To this end, a real valued
interval [0, Σ] is determined, where Σ is the sum of the individuals fitness in the current
population:

∑ =
=Σ N

i

iqF
1

)((11)

The individuals are then mapped to contiguous segments in the range [0, Σ], such that each
individual segment is equal in size to its fitness. For instance, in Figure 3 the length of the line is
the sum of the seven individual’s fitness. The individual 7 has the largest fitness value and
occupies the largest segment whereas the individuals 4 and 6 are the least fit and have
correspondingly smaller segments within the line.

Figure 3 – Roulette wheel selection.

0 Σ

Random number in [0, Σ]

1 2 3 4 5 6 7

The selection is performed by generating a random number, uniformly distributed in the interval
[0, Σ]; the individual whose segment spans the random number is selected. This process is
repeated until the desired numbers of individuals is obtained. This method is similar to a roulette
wheel with each slice proportional in size to the fitness.

Tournament selection. A number N’ of individuals is chosen randomly from the current
population and the best individual from this group is selected as parent. This process is repeated
until the desired numbers of individuals is obtained. The parameter for tournament selection is the
tournament size N’. This parameter takes values from 2 to N (i.e. the population size). A detailed
study about the tournament selection can be found in Miller & Goldberg (1995).

2.1.4. The reproduction step and its operators

A repeated selection from the same population produces nothing more than copies of the
individuals originally in it with a preference for the best ones. To hope an improvement, some
variations in the parents population must be done. The aim of the reproduction step is to produce
a new population from the parents that were selected from the current population. To this end,
two kinds of operator can be used: crossover operator (or recombination operator) and mutation
operator.

Crossover operator. Pairs of parents are combined to form via crossover operation two new
individuals (the childs) that inherit many characteristics of their parents. There are lots of
possibilities for defining such an operator, depending on the problem and its encoding. In the case
of a coding by bit-strings, the simplest form is the so called one-point crossover. For each pair of
parents, the one-point crossover is performed with a given probability pc. If crossover occurs, an
integer k is generated at random according to a uniform distribution between 1 and nq×b-1, and
the last nq×b-k bits of each parent are exchanged to produce two childs, as illustrated Figure 4.

Figure 4 – One-point crossover operator.

The crossover probability pc is a user defined parameter. Usually, pc is chosen in the interval [0.5,
0.95], this mean that for a selected pair of parents there is a chance of crossover between 50 and
95%. If the crossover operation is not performed, the two childs are identical to their parents. The
crossover operation can be generalized for more than one-point crossover (see Dréo et al., 2006).

Mutation operator. The main objective of mutation is to provide new individuals that cannot be
generated otherwise. This step is essential because it allows the exploration of new regions where,
perhaps, good solutions can be found. This is in contrast with the selection and crossover
operators which focus attention on promising region of the search space. From this point of view,
selection and crossover operators permit the exploitation of promising regions, whereas mutation
operator allows the exploration of new regions. These two aspects, exploration and exploitation,
are essential to increase the probability of finding a global optimal solution.

Randomly selected position

 k
Parent 1: 1 0 1 1 0 1 0 0 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 Child 1
 →
Parent 2: 0 1 1 1 1 1 0 0 1 1 0 1 0 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 0 1 0 0 Child 2

Each individual of the population obtained via crossover is submitted to mutation with a given
probability pm. The simplest mutation operation consist of choosing at random a position between
1 and n×b, and substituting the character in that position by another character of the alphabet. For
instance, in the case of a bit-string representation, the mutation is obtained simply by flipping a
randomly chosen bit (see Figure 5).

Figure 5 – Mutation operator.

The mutation probability pm is also a user defined parameter. This probability is usually chosen
much lower than the crossover probability to give preference to the exploitation phase. Value
between 0.001 and 0.07 are common in practice.

2.1.5. The stopping rule

After the reproduction step, a new population of N individuals is obtained, which will be used in
the next iteration of the algorithm (see figure 2). The various operations detailed above:
evaluation, selection and reproduction are then repeated until a termination condition has been
reached. There has been very few theoretical studies about when to stop a GA (Eiben &
Schoener, 2002). The usual stopping criterion is a fixed number of iterations, but this does not
guarantee the convergence of the algorithm to a solution. A more satisfying stopping rule consist
in detecting that no significant improvement was found during a certain number of iterations NG.
In this way, we can stop the GA when the following condition is satisfied:

GA

N

j
Gbest

G

N

j
best

G

GG

NjiqF
N

jiqF
N

ρ≤−−−− ∑∑
== 11

))((
1

))((
1

 (12)

where GAρ is the minimum level of improvement desired on NG iterations,)(lqbest is the best

individual at generation l and i is a multiple of NG. Possible values of GAρ and NG are,

respectively: 0.001 and 10.

2.2. The standard genetic algorithm

Although there are many variations in implementing the GA, we present here a fairly standard
form of this algorithm.

1. (Initialisation). Randomly generate an initial population of N individuals: Nqqq ,,, 21 L

(with N even) and evaluate the fitness function NiqF i ,,1),(L= . Each individual iq
(a point in search space) is encoded, for instance, into a bit-string.

2. (Parent selection). Select with replacement N parents from the current population, and

group them randomly in pairs. The parents are selected according to their fitness; the
individuals having higher fitness value being selected more often.

Randomly selected position

 1 0 1 1 0 1 0 0 1 1 1 1 0 1 1 1 → 1 0 1 1 0 1 0 1 1 1 1 1 0 1 1 1

3. (Reproduction: crossover). For each pair of parents, resulting of step 1, generate a
random number r uniformly in the range [0, 1]. If cpr ≤ , then generate a uniform

random integer k in the range [1, nq×b-1] and exchange the nq×b-k elements of each
parent to the right of element k. If no crossover take place (i.e. cpr >), then form two

offsprings that are exact copies of the parents.

4. (Reproduction: mutation). For each individual resulting of step 3, generate a random
number r uniformly in the range [0, 1]. If mpr ≤ , then generate a uniform random

integer k in the range [1, nq×b], and switch the element k of the bit-string from 0 to 1 or
vice versa.

5. (Evaluation and stopping rule). Via a decoding rule, compute the fitness value of each

individual of the new population resulting of step 4. Terminate the algorithm if the
stopping rule is satisfied (i.e. a maximum number of iteration has been reached or no
further improvement is found); else go to 2.

As it is usual with stochastic algorithms, there are many choices to do for a practical
implementation of the GA (see Spall, 2003). In particular: the encoding rule, the population size
(N), the probability distribution generating the initial population, the strategy for parent-selection,
the number of points-crossover, the crossover probability (pc) and the mutation probability (pm),
the stopping rule. Table 3 summarizes the choices most widely adopted in practical applications.
A more detailed study on this issue can be found in Lobo, Lima & Michalewicz (2007).

Table 3. Parameters of a standard Genetic Algorithm.

 Encoding rule Bit-string of length nq×b, where nq = dim(q)
 Population size (N) 20 ≤ N ≤ 500
 Probability distribution Uniform on the search space
 Parent-selection Roulette wheel
 Number of points crossover One-point crossover
 Crossover probability 0.5 ≤ pc ≤ 0.95
 Mutation probability 0.001 ≤ pm ≤ 0.07

2.3. Advantages and disadvantages of GA

The main advantage of GA (and its many versions) is its robustness as well as its intuitiveness,
ease of implementation, and the ability to deal successfully with a wide range of difficult
problems. By robustness it must be understood that, within fairly wide margins, the problem of
adjusting the parameters is not very critical. This insensitivity makes it possible to find acceptable
solutions without excessive effort. A main drawback with GA is that some well adapted
individuals (compared to the other members of the population, but faraway from the optimum
point), dominate the population, causing it to converge on a local minimum. In these conditions,
the probability of finding better solutions is very small because crossover between similar
individuals, produces little changes. Only mutation remains to seek the best individuals, but this
is generally not sufficient for a fast convergence toward the best solution. The latter requires thus
an excessive computational time.

3. Particle Swarm Optimization (PSO)

Swarm intelligence (SI) can be defined as the apparent intelligence that is emergent from the
collective behavior of decentralized systems. In other words, a certain type of intelligence can
emerge from the perpetual interaction of self-organized entities. SI systems are generally
composed of a population of simple agents, interacting locally with each other and with
their environment. The main feature of these systems is that they do not have a
centralized control which imposes the behavior of each agent. Instead, each agent is
governed by its own rules and the local interactions between them lead to the emergence
of an intelligent global behaviour, unknown to the individual agents4. Due to this
interesting feature, optimization techniques inspired by swarm intelligence have received a lot
of attention during the past years, and various techniques have been proposed in the
literature. Among them, the most widely used swarm intelligence algorithm in the context of
continuous optimization is indubitably the Particle Swarm Optimization (PSO).

PSO is a relatively recent stochastic optimization technique developed by J. Kennedy and R.
Eberhart in 1995. GA and PSO are similar in the sense that these two approaches are population-
based random search methods but with different strategies of evolution. PSO draws its inspiration
from the collective behavior of living beings, including the notion of collective intelligence of a
population of individuals (Kennedy & Eberhart, 1995). It is a population based search algorithm
where each individual is called particle and represents a candidate solution. Each particle evolves
through the search space seeking the optimal solution of the optimization problem. A particle i of
a swarm is characterized by its position qi and its change in position vi, called velocity. For
seeking the optimal solution, each particle utilizes two kind of information: the memory of its
own best position and the knowledge of the global best position found by the group5. The
movement of a particle is then adjusted according to its velocity and the difference between its
current position, the best position found by the group and the best position it has found so far. The
repetition of this procedure leads the swarm toward a domain of the search space containing,
hopefully, high-quality solutions.

This section on PSO is organizes as follows. In section 3.1, the dynamic of the particle swarm
is described. Notably, the updating rule of position and change in position are presented with
some details. Section 3.2 presents a general algorithm for a practical implementation of PSO, and
the standard values of the user defined parameters are given. Finally, section 3.3 presents the
majors advantages and inconvenient of PSO.

3.1. Dynamic of the particles of a swarm

Consider a swarm of N particles. The position of a particle i (Ni ,,1L=), is denoted qi, where

Ti
n

iii

q
qqqq][21 L= is the nq-dimensional vector of decision variables of the optimization

problem (3). The change in position or velocity of a particle i is denoted vi, where
Ti

n
iii

q
vvvv][21 L= is the nq-dimensional vector of change in decision variables. The

change in position of a particle i at iteration k+1 is defined by:)()1()1(kqkqkv iii −+=+ ; the
movement of a particle is then governed by the equation:

)1()()1(++=+ kvkqkq iii (13)

4 In Nature, this kind of behavior can be observed in colonies of insects (e.g. ants), flocks of birds or schools of fish.
5 In a minimization problem, the term “best” must be understood as the position with the smallest objective value.

The key point lies in the manner in which the velocity is modified over time. The updating rule of
velocity is done in such a way that the swarm of particles mimics the collective behaviour
observed on living beings. According to the observation of Boyd and Richardson (Boyd &
Richardson, 1985), human beings utilize two important kinds of information in the decision
process. The first one is their own experience, i.e. they have tried the choice and know which
state has been better so far and also how good it was. The second one is the experience of others,
i.e. the knowledge about how the other agents around them have performed. By analogy with
these observations made about social behaviors, the velocity of a particle i is modified according
to its own previous best solution pi and its group's previous best solution pg, with the aim to get an
improvement (i.e. in the sense of a decrease of the cost function). Hence, the updating rule of the
velocity of the particles is dependent on their current speed and position, the best preceding
position pi (i.e. corresponding to the lowest cost function J) and the best position pg of the group:

),),(),(()1(g
iiii ppkvkqfkv =+ . The function of evolution f allowing updating the velocity of

a particle i, is usually implemented as follows:

))(())(()()()1(21 kqpkqpkvkwkv i
g

iiii −⊗+−⊗+=+ ϕϕ (14)

where w(k) is known as the inertia weight; this factor is used to reduce the growth in velocity of
the particle, more details on w(k) will be provided below. In the relation (14), ϕ1 and ϕ2 are two
random functions defined as:

222111 , UcUc == ϕϕ (15)

Where U1 and U2 are two random vectors whose components are uniformly generated in the
range (0, 1), c1 and c2 are two positive constants known, respectively, as the individual (or
cognitive) coefficient and social coefficient. These user defined coefficients are usually set about
2. The symbol ⊗ stands for a componentwise vector multiplication. The updating rule (14) shows

that the velocity of a particle is determined by its velocity)(kvi and the so called individual

and social parts. The individual part))((1 kqp ii −⊗ϕ , represents the tendency of the particle

to return to the best position it has visited so far whereas the social part))((2 kqp i
g −⊗ϕ

represents the tendency of the particle to be attracted towards the best position found by the
swarm (Blum & Li, 2008). Figure 6 gives a geometrical interpretation of the updating rule (14).

Figure 6 – Geometrical interpretation of the updating rule.

qi(k)
w(k)vi(k)

vi(k) ϕ1⊗(pi - qi(k))

ϕ2⊗(pg - q
i(k))

qi(k+1)

pi

pg

pi - qi(k)

pg - q
i(k)

The inertia weight. The inertia coefficient],[)(maxmin wwkw ∈ is used to control the growth of

the velocity of the particles i.e. the stability of the swarm. To this end, |w(k)| must be lower than
one. Note that a positive inertia coefficient introduces a preference for the particle to continue
moving in the same direction it was going previously. A progressive decreasing value of w over
time introduces a progressive transition from exploratory (global search) to exploitative (local
search) mode. This decrease occurs between the bounds wmax and wmin defined by the user.
Usually w(k) is reduced linearly according to the following rule:

min
minmax w

wwk
kw +−−=

MaxIter

(MaxIter))(
)((16)

where MaxIter is the maximum number of allowed iterations. Typically, wmin is set about 0.3 or
0.4 and wmax is set about 0.8 or 0.9.

PSO with constriction coefficient. A variant of the updating rule (14), proposed by Clerc (Clerc
& Kennedy, 2002), uses what is called a constriction factor noted χ. With this variant, the update
of the velocity is done as follows:

4,,
42

2

,

))](())(()([)1(

and:with 21
2

222111

21

>+=
−−−

=

==

−⊗+−⊗+=+

ϕϕ
ϕϕϕ

κχ

ϕϕ
ϕϕχ

cc

UcUc

kqpkqpkvkv i
g

iiii

 (17)

Note that the constriction factor corresponds to the use of a constant inertia weight: χ=)(kw for
all k. This approach was introduced to ensure the stability of the swarm i.e. to avoid the
divergence of the particles beyond the boundaries of the search space (for more detail see Clerc &
Kenndy, 2002). With this variant, the parameter setting usually adopted is: 05.2,1 21 === ccκ ,

thus 1.4=ϕ and 73.0≈χ .

3.2. The standard PSO algorithm

According to the principles discussed above, we can solve the optimization problem (3) using the
following algorithm.

1. (Initialisation). Set 0=k . Generate an initial population of N particles:

)0(,),0(),0(21 Nqqq L . Generate the corresponding initial velocities:

)0(,),0(),0(21 Nvvv L . Set the local bests pi’s to Niqp ii ,,1),0(L== . Set the global

best pg to))0((minarg
1

i

Ni
g qJp

≤≤
= .

2. (Swarm evolution). Set 1+= kk . Update the velocity of each particle according to:

Nippkvkqfkv g
iiii ,,1),,),1(),1(()(L=−−= , where f is given by (14) or (17).

Update the position of each particle using: Nikvkqkq iii ,,1),()1()(L=+−= .

3. (Update the pi’s and pg). For each particle, update the local best position found so far

using the following rule: NikqppJkqJ iiii ,,1),(then)())((If L==< . Update the

global best position as follows:)(minarg
1

i

Ni
g pJp

≤≤
= .

4. (Stopping rule). Terminate the algorithm if the stopping rule is satisfied (i.e. a maximum
number of iteration has been reached or no further improvement is found); else go to 2.

Initialization. The initial population of particles is usually generated at random by sampling the
search space according to a uniform distribution. This can be done in a similar way as in GA, see
section 2.1.1. The initial velocities can also be generated at random but this requires defining a
sample space. To this end we can introduce a parameter bound vmax. The initial velocities can then

be obtained by sampling the space { }maxeemax

n
vvvv q 11R ≤≤−∈= :V according to a uniform

distribution. The symbol 1 represents the unit vector and e≤ indicates element-by-element

inequality. The swarm size N is a user defined parameter. Sizes of 20-150 particles are common
in practice. Concerning this parameter, the same things as in GA apply (see section 2.1.1).

Stopping rule. A simple stopping criterion is to fix a maximum allowed number of iterations
MaxIter. This parameter is required to use a varying inertia weight (see relation (16)).
However, the use of this criterion alone cannot guarantee the convergence of the algorithm to a
solution. Instead, it is preferable to stop the algorithm when no improvement is found after a
given number of iteration NI. To this end we can use the same stopping rule as in GA, but in our
experiments, we have found better to stop the algorithm when the following condition is satisfied:

The algorithm stops when: PSOIgg NkpJkpJ ρ≤−−))(())(((18)

where k is the current iteration, ρPSO is the minimum level of improvement desired on NI
iterations, and)(lpg is the global best found at iteration l. Possible values of ρPSO and NI are,

respectively: 0.001 and 50.

Parameter of PSO algorithm. As in GA, there are many choices to do for a practical
implementation of the PSO algorithm. In particular: the swarm size (N), the probability
distributions generating the initial positions and the initial velocities, the maximal allowed
velocity, the bound of the inertia weight and its rule of decrease, the cognitive factor and the
social factor. Table 4 summarizes the choices most widely adopted in practical applications. The
values given in this table are only indicatives and some variations can be required to improve the
performance. But this of course is not at all easy to do particularly when the number of
parameters is important.

Table 4. Parameters of a standard PSO Algorithm.
 Swarm size (N) 20 ≤ N ≤ 150
 Initial positions randomly (uniformly) generated in the search space
 Maximal velocity (vmax) vmax can be set to the maximal bound of q
 Initial velocities randomly (uniformly) generated in [-vmax, vmax]

n
 Bounds of the inertia weight (wmin, wmax) 0.3 ≤ wmin ≤ 0.4, 0.8 ≤ wmax ≤ 0.9
 Rule of decrease of the inertia weight Linear from wmax to wmin
 Cognitive factor (c1) c1 ≈ 2
 Social factor (c2) c2 ≈ 2

3.3. Advantages and disadvantages of PSO

The main advantage of the PSO is its ease of implementation as well as its ability to find good
solutions much faster than other metaheuristics (less function evaluations). However, it cannot
improve the quality of the solutions as the number of iterations is increased (Angeline, 1998).
Similar to the GA, an important drawback with PSO, is that the swarm may prematurely
converge. This is mainly because particles converge to a point which is on the line between the
global best point pg and the personal best positions pi. However this point is not guaranteed to be
even a local optimum. Another drawback, similar to the SA, is the great sensitivity of PSO to
parameter settings: a small change in parameters may result in a proportionally large effect
(Lovberg & Krink, 2002).

4. Heuristic Kalman Algorithm (HKA)

In this section, we introduce a recently developed optimization method called Heuristic Kalman
Algorithm (HKA) (Toscano & Lyonnet, 2009). As GA and PSO, HKA falls into the category of
the so called “population based stochastic optimization technique”. However, its principle is
entirely different to other known stochastic algorithms. Indeed, HKA considers the optimization
problem as kind of learning process intended to give an estimate of the optimum. It utilizes a
Gaussian probability density function (GPDF), a measurement process (MP) and a Kalman
estimator (KE) allowing to improve the quality of the estimate obtained through the MP. The
GPDF evolves in the search space seeking the optimal solution of the optimization problem. A
GPDF is characterized by its mean vector m and its variance matrix Σ. For seeking the optimal
solution, the parameters of the GPDF are updated by taking into account sample points obtained
through a measurement process; this is done using a Kalman estimator. Indeed, a Kalman
estimator can be seen as a mechanism able to update our knowledge about unknown quantities of
interest, by taking into account new gained information. The “movement” of the GPDF is then
adjusted according to its current mean value and the new information obtained via the
measurement process. The repetition of this procedure leads the GPDF toward a domain of the
search space containing, hopefully, high-quality solutions.

This section on HKA is organizes as follows. In section 4.1, the principle of the heuristic
Kalman algorithm is described. Notably, the updating rules of the parameters of the GPDF are
presented with some details. Section 4.2 presents a general algorithm for a practical
implementation of HKA as well as the standard values of the user defined parameters. Finally,
section 4.3 presents the majors advantages and inconvenient of HKA.

4.1 Principle of the algorithm

The principle of the algorithm is shown Figure 7. The proposed procedure is iterative, and we
denote by k, the kth iteration of the algorithm. We have a random generator of probability density
function (pdf) g(q), which produces, at each iteration a collection of N vectors that are distributed
about a given mean vector m(k) with a given variance-covariance matrix Σ(k). This collection can
be written as follows:

{ })(,),(),()(21 kqkqkqk NL=q (19)

where qi(k) is the i th vector generated at the iteration number k: Ti
n

ii kqkq
q

kq)](,),(1[)(L= , and

)(kqi
l is the l th component of qi(k) (qnl ,,1K=).

Figure 7 – Principle of the algorithm.

This random generator is applied to the cost function J. Without loss of generality, we assume
that the vectors are ordered by their increasing cost function i.e.:

))(())(())((21 kqJkqJkqJ N<<< L (20)

The principle of the algorithm is to modify the mean vector and the variance matrix of the
random generator until a high quality solution is reached. More precisely, let Nξ be the number of

considered best samples, that is such that))(())((kqJkqJ iN <ξ for all ξNi > . Note that the best

samples are those of the sequence (19) which have the smallest cost function. The objective is
then to generate, from the best samples, a new random distribution that approaches the minimum
of the cost function J. The problem is how to modify the parameters of the random generator to
achieve a reliable estimate of the optimum.

To solve this problem, we introduce a measurement procedure followed by an optimal
estimator of the parameters of the random generator. The measurement process consists in
computing the average of the candidates that are the more representative of the optimum. For the
iteration k, the measurement, denoted ξ(k), is then defined as follows:

∑
=

=
ξ

ξ
ξ

N

i

i kq
N

k
1

)(
1

)((21)

where Nξ is the number of considered candidates. We can consider that this measure gives a
perturbed knowledge about the optimum, i.e.

)()(kvqk opt +=ξ (22)

where v(k) is an unknown disturbance, which is centered on qopt, and acting on the measurement
process. Note that v(k) is the random vector between the measure ξ(k) and the unknown optimum
qopt. In other words, v(k) is a kind of measure of our ignorance about qopt. Of course, this
uncertainty cannot be measured but only estimated by taking into account all available
knowledge. In our case, the uncertainty of the measure is closely related to the dispersion of the
best samples qi(k) (ξNi ,,1K=).

Random Generator

()kkm Σ,

{ } Ni

i
i
kqk

=

== 1)(q

ξk

Cost Function

J(.)

Measurement
Process

Optimal
Estimator

{ } Ni

i
i
kqJ

=

=1)(

()kkm Σ,

Nξ

N

Our ignorance about the optimum can thus be taken into account by using the variance vector
associated to these best samples:

() ()
TN

i
n

i
n

N

i

i kkqkkq
N

kV
qq 








∑∑

==

−−=
ξξ

ξξ
ξ 11

11)()()()(
1

)(,,L (23)

In these conditions, the Kalman estimator can then be used to make an estimate, so-called “a
posteriori”, of the optimum, i.e. taking into account the measure as well as the confidence we
place in it. As seen, this confidence can be quantified by the variance vector (23).

Roughly speaking, a Kalman filter is an optimal recursive data processing algorithm
(Maybeck, 1979). The optimality must be understood as the best estimate which we can make
according to the model used for the measurement process as well as the data used to compute this
estimate.

Figure 8 – Conditional pdf.

To understand how a Kalman filter works, consider the Figure 8, which depicts a conditional
probability density of the value of a scalar quantity q obtained at iteration k, conditioned on
knowledge that its measurement at the first iteration is ξ1 and similarly for iterations 2 through k.
This conditional probability density function is denoted as gk(q |ξ1, ξ2, ..., ξk). In our problem, q is
the decision variable related to a given optimization problem, and ξ1, ξ2, ..., ξk are the successive
measurement about the optimal value qopt. Such a conditional probability density contains all the
available information about qopt, it indicates, for the given value of all measurements taken up
through iteration k, what the probability is that qopt belongs to any particular range of values. The
shape of the pdf reflects the amount of uncertainty we have in the knowledge of the value of qopt.
If the pdf is a narrow peak, then the most probable values are concentrated in a narrow band of q
values. On the contrary, if the pdf is very flat, then the most probable values are spread over large
range of q, indicating a large uncertainty about the knowledge of qopt.

q

gk(q |ξ1, ξ2, ..., ξk)

Figure 9 – propagation of the pdf through the use of the Kalman filter.

The Kalman filter allows updating the pdf, measurement after measurement (cf. Figure 9); this
is what we call the propagation of the pdf. In this way, we see that we start in a state of quasi
“complete ignorance” about qopt; but, as we accumulate information through the measurement
process, we acquire more and more accurate estimates of the optimum. Note that this corresponds
very nicely to the common learning process.

Updating rules of the Gaussian generator. Our objective is to design an optimal estimator that
combines a prior estimation of qopt and the measurement ξ(k), so that the resulting posterior
estimate is better in the sense of a diminution of the cost function (minimization problem). Based
on the Kalman equations, the updating rule of the Gaussian generator are as follows (see Toscano
& Lyonnet, (2009) for a detailed derivation):





Σ−=+Σ

−+=+

)())()(()1(

))()()(()()1(

kkLkaIk

kmkkLkmkm ξ
 (24)

With:

1))()()(()(−+ΣΣ= kDkkkL , and:

))((max)(,1min

)(,1min

)(

1

2

1

1

2

1

1

kvkv

kv

ka

i
ni

n

i in

n

i in

q

q

q

q

q

≤≤=

=

+





























=

∑

∑α
 (25)

where D(k) is a diagonal matrix having in its diagonal the variance vector V(k), vi(k) represents
the i th component of the variance vector V(k) defined in (23), and]1,0(∈α is given by the user

(usually a is set about 0.4 to 0.7). The coefficient)(ka is used to control the decrease over time

of the variance matrix Σ(k). This decrease ensures a progressive transition from global search to
local search.

g1(q |ξ1)

g2(q |ξ1, ξ2)

g3(q |ξ1, ξ2, ξ3)

g4(q |ξ1, ξ2, ξ3, ξ4)

g5(q |ξ1, ξ2, ξ3, ξ4, ξ5)

qopt

q

Note that all the matrices used in this formulation (i.e. L(k), Σ(k), D(k)) are diagonals.
Consequently, to save computation time we have to use a vectorial form for computing the
various quantities of interest. The vectorial form of (24) and, (25) are given by:

))())((diag//())((diag))((diag

))((diag))((diag)())((diag))1((diag

))()(())((diag)()1(

kVkkkL

kkLkakk

kmkkLkmkm

+ΣΣ=

Σ⊗−Σ=+Σ

−⊗+=+ ξ
 (26)

where the symbol ⊗ stand for a element-by-element product and, similarly, // means a element-
by-element divide.

4.2. Algorithm

According to the principles discussed above, the minimization of the objective function J(q) (see
relation (3)) can be done according to the following algorithm.

1. (Initialisation). Choose N, Nξ and α. Set 0=k , 0)(mkm = , 0)(Σ=Σ k .

2. (Gaussian generator). Generate a sequence of N vectors)(,),(),(21 kqkqkq NL ,
according to a Gaussian distribution parametrized by)(km and)(kΣ .

3. (Measurement process). Using relations (21) and (23) compute ξ(k) and V(k).

4. (Updating rules of the Gaussian generator). Using relations (26) update the parameter

of the Gaussian generator.

5. (Stopping rule). If the stopping rule is not satisfied go to step 2 otherwise stop. to 2.

The practical implementation of this algorithm requires: an appropriate initialization of the the
Gaussian distribution i.e. 0m and 0Σ ; the selection of the user defined parameters namely i.e.: N,

Nξ and α.; the introduction of a stopping rule. These various aspects are considered hereafter.

Initialization and parameter settings. The initial parameters of the Gaussian generator are
selected to cover the entire search space. To this end, the following rule can be used:

q

ii

i

ii

i

nn

ni
qq

qq

m

qq

,,1,

6

2:with,

00

00

00

,
1

0

1

0 LOM =
−

=

+
=

=Σ=










































σ

µ

σ

σ

µ

µ
 (27)

where iq (respectively

i
q) is the i th upper bound (respectively lower bound) of the hyperbox

search domain. With this rule, 99% of the samples are generated in the intervals: ii σµ 3± ,

qni ,,1L= .

We have to set the three following parameters: the number of points N, the number of best
candidates Nξ and the coefficient α. To facilitate this task, table 3 summarizes the standard
parameter setting of HKA.

Table 5. Standard parameter setting of HKA.
 Number of sample points (N) 20 ≤ N ≤ 150
 Number of best candidates 2 ≤ Nξ < N
 Coefficient α 0.4 to 0.9

Stopping rule. The algorithm stops when a given number of iterations MaxIter is reached
(MaxIter = 300 in all our experiments) or a given accuracy indicator is obtained. The latest take
into account the dispersion of the Nξ best points. To this end, we consider that no significant
improvement can be done when the Nξ best points are in a ball of a given radius ρHKA (e.g.

005.0=HKAρ). More precisely, the algorithm stops when:

HKA
i

Ni
qq ρ

ξ

≤−
≤≤ 2

1

2
max (28)

where
2

 ⋅ represents the Euclidean norm of its argument, and ξNqq ,,1 L are the Nξ best

candidate solutions.

In conclusion, the search procedure HKA is articulated around three main components, the
Gaussian pdf function gk(q) (parametrized by m(k) and Σ(k), the measurement process and the

Kalman estimator. Sampling from the pdf gk(q) at iteration k, creates a collection of vectors q(k).
This collection is then used by the measurement process to give an information about the
optimum. Via the Kalman estimator, this information is then combined with the pdf gk(q) in order

to produce a new pdf gk+1(q) which will be used in the next iteration. After a sufficient number
of iterations, the sequence of estimates (i.e. the m(k)) thus produced leads to a near
optimal solution.

4.3. Advantages and disadvantages of HKA

HKA shares with some other stochastic algorithms the same interesting features such as: ease of
implementation, low memory and CPU speed requirements, search procedure based only on the
values of the objective function, no need of strong assumptions such as linearity, differentiability,
convexity etc, to solve the optimization problem. In fact it could be used even when the objective
function cannot be expressed in an analytic form, in this case, the objective function is evaluated
through simulations. However, the main drawback is that HKA may prematurely converge to a
local solution, notably when the coefficient α is too high (say about 0.9). The trick is to use low
values of this parameter but this lead to a slow convergence of the algorithm. In fact this
parameter allows to adjust the trade off between global and local search.

5. Comparison

In this section, the ability of the presented methods to solve a wide range of non-convex
optimization problems is tested on various numerical examples, both in the unconstrained and
constrained cases. The various experiments were performed using a 1.2 Ghz Celeron personal
computer.

5.1. Comparison of HKA with SA, GA and PSO

The optimization methods presented SA, GA, PSO and HKA have been compared using a set
of benchmark functions (2 to 30 variables), which are listed in the Appendix A1. In our
experiments, the algorithms employed for SA, GA and PSO are adapted from the following
MatLab codes: anneal.m (Vandekerckhove, 2006), Genetic Algorithm Toolbox (Chipperfield
et al., 1995}, and pso.m (Devicharan, 2003).

Initialization and parameter setting. The initialization procedure as well as the parameter
setting is specific to each optimization method. Table 6 summarizes these issues for SA, GA,
PSO and HKA. The parameters used for SA, GA and PSO are essentially those recommended in
the literature and presented in sections 1, 2, 3 and 4. Note that one of the great advantages of
HKA over other methods is its small number of parameters, only three parameters. Indeed, the
parameters of the initial Gaussian distribution are fixed by the bounds of the search space (see
Section 4).

Table 6. Initialization and parameter setting of SA, GA, PSO and HKA.

Method Initialization Parameter setting
SA The starting point is determined using the

method described in section 2.3.1.
method 2 i.e.

q0=arg min1≤i≤η(J(xi))

Initial temperature: T0=-(∆J)max/ln(τ0),
where (∆J)max is defined as :

(∆J)max = max1≤i≤η (J(qi)) - min1≤i≤η (J(qi))

Rule of the decrease of the temperature:

kk TT 8.01 =+

Number of samples for the determination of the
starting point and the initial temperature: η=4000.

Rate of acceptance of (∆J)max : τ0=0.8

Final temperature=1e-8.

Maximum number of tries within one
temperature=100×dim(x)

Maximum number of successes within one
temperture=12×dim(x)

GA Initial population is randomly selected in
the hyperbox search domain given for each
test function (see Appendix).

Population size=100, One point crossover with
probability 0.7, probability of mutation=0.07,
Precision=16bits, binary coding.

PSO Initial positions are randomly selected in
the hyperbox search domain given for each
test function (see Appendix).
Initial velocities are randomly selected in
the interval [-mv, mv].

Swarm size=100, Initial inertia weight=0.8, final
inertia weight=0.4, cognitive acceleration factor
c1=2, social acceleration factor c2=2, Bound for
the initial velocities mv = 4.

HKA Initial parameters of the gaussian pdf : see
section 2.3.1, method 1.

Number of points N=100, Number of best
candidates Nξ=N/10, Slowdown coefficient α=0.7

Stopping rules. The algorithm (SA, GA, PSO or HKA) stops when a given number of iterations
MaxIter is reached (MaxIter = 300 in all our experiments6) or a given accuracy indicator is
obtained. The latest is described for each method hereafter.

6 To be comparable in term of the maximum number of function evaluations, the maximum number of iterations for SA is
NbPts*MaxIter, where NbPts is the number of points used in our experiments (i.e. the population size (GA), the swarm size
(PSO), the value of N (HKA).

SA. The SA stops when the final temperature is reached or after 10 successive
temperature stages without any improvement (see section 1).

GA. The GA stops when 001.0≤GAρ with NG = 10 (see section 2).

PSO. The PSO stops when 001.0≤PSOρ with NI = 50 (see section 3).

HKA. The HKA stops when 005.0≤HKAρ (see section 4).

Performance evaluation. To evaluate the methods efficiency, we retained the following criteria
summarizing results from 50 minimizations per test function: the success ratio, the mean number
of iterations required to obtain a near-optimal solution, the mean computation time and the
average error. The success ratio indicates the number of times that the algorithm gives a near-
optimal solution for 50 successive runs. In our experiments, the near-optimal set of solutions is
defined as { }minJqJq 05.1)(: ≤∈= DDDDEEEE , where Jmin is the known optimal solution. The mean

number of iterations, the mean computation time and the average error are evaluated in relation to
only the successful minimizations (i.e. when a near-optimal solution is found).

The results of SA, GA, PSO and HKA for the test functions F1 to F9 (see Appendix A1) are
shown in Table 7. The symbol " - " mean that the algorithm has not converged to a near optimal
solution in 50 runs. This occur for SA on test functions F4 (Rastrigin function, 5 variables), F6
(Michalevicz function 10 variables) and F7 (Levy function, 30 variables). The same is true for
GA except for the test function F4 with however a very low success ratio. It is clear from Table 7
that the better results are obtained for PSO and HKA.

Table 7. Comparison of SA, GA, PSO and HKA on test functions F1 to F9.

Success Ratio

Average Number of Iterations
(CPU Time second)

Average Error to the known global
optimum

 SA GA PSO HKA SA GA PSO HKA SA GA PSO HKA

F1

39/50

46/50

50/50

50/50

64
(0.4)

66
(1.7)

84
(0.35)

150
(0.5)

2.0e-5

2.5e-5

1.0e-5

1.0e-6

F2

50/50

50/50

50/50

50/50

77
(0.7)

56
(1.7)

128
(0.8)

18
(0.1)

5.0e-3

1.8e-5

1.5e-3

2.0e-4

F3

50/50

50/50

50/50

50/50

81
(2.5)

50
(3.0)

74
(1.5)

46
(0.8)

9.0e-4

7.0e-6

2.0e-6

3.0e-7

F4

−

3/50

42/50

40/50

−

197
(7.5)

174
(0.5)

34
(0.06)

−

3.0e-2

5.0e-8

2.0e-4

F5

44/50

46/50

50/50

49/50

97
(1.3)

135
(7.0)

183
(1.7)

48
(0.4)

1.0e-3

1.0e-2

1.0e-3

1.0e-4

F6

−

−

41/50

43/50

−

−

259
(4.0)

62
(0.9)

−

−

2.5e-1

1.0e-1

F7

−

−

31/50

48/50

−

−

295
(21.0)

83
(5.0)

−

−

6.0e-4

2.0e-3

F8

5/50

49/50

11/50

50/50

87
(1.0)

89
(3.5)

166
(1.0)

76
(0.7)

1.5e-2

7.0e-3

6.5e-2

7.0e-3

F9

16/50

35/50

50/50

48/50

127
(2.5)

56
(2.0)

83
(0.6)

157
(0.9)

5.0e-4

6.0e-4

6.5e-4

7.0e-5

5.2. Comparison of HKA with other metaheuristics

In this section, we complete our numerical experiments by comparing HKA with other
metaheuristics. These ones are either enhanced versions of SA, GA and PSO or other methods not
discussed in this chapter such as Tabu Search, Ant Colony Optimization or Geometric
Programming. We have not programmed the corresponding algorithms but only used the
available published results. For the details of these metaheuristics such as the principle of search,
the parameter setting, the stopping rule and so forth, we refer to the cited literature. We have
considered separately the unconstrained and constrained cases, because specific methods have
been proposed to handle constraints (notably the notion of co-evolution or the introduction of an
augmented Lagrangian). It must be noted that HKA is the same algorithm in both cases. The
constraints are handled merely by introducing an augmented cost function via penalty functions.
In all our experiments, the stopping rule and the initialization of the gaussian generator, are the
same as those described in the above section.

Unconstrained case. HKA was compared to other metaheuristics such as ACOR, CGA, ECTS,
ESA and INTEROPT, which are listed in Table 8. The efficiency of HKA was tested using a set
of well known test functions (RC, B2, DJ, S4,5, S4,7, S4,10, and H6,4), which are listed in the
Appendix A2.

Table 8. List of the methods used in our comparison.

Method Reference
Ant colony optimization for continuous domains (ACOR)

Continuous Genetic Algorithm (CGA)

Enhanced Continuous Tabu Search (ECTS)

Enhanced Simulated Annealing (ESA)

INTEROPT

Socha & Dorigo, (2008)

Chelouah & Siarry, (2000)

Chelouah & Siarry, (1999)

P. Siarry et al., (1997)

Bilbro & Snyder, (1991)

For these experiments we performed each test 100 times and we compared our results with those
previously published. In all these experiments, the following parameters have been used: Number
of points N = 25, Number of best candidates Nξ = 5, α =0.9. The experimental results are
presented in Table 9, for each test function, we give the success ratio for 100 runs and the
corresponding average number of function evaluations. It can be seen that some results are not
available for ECTS, ESA and INTEROPT (this is indicated by the symbol " - "). From Table 9
we can see that the better results are obtained for ACOR , CGA and HKA. The number of
evaluations produced by HKA is slightly larger than those produced by CGA and ACOR , but its
ratio of success is better.

Table 9. Comparison of HKA with ACOR , CGA, ECTS, ESA and INTEROPT.
 Success Ratio (%) Average number of function evaluations
 ACOR CGA ECTS ESA INTER

OPT
HKA ACO R CGA ECTS ESA INTER

OPT
HKA

RC 100 100 100 - 100 100 857 620 245 - 4172 625
B2 100 100 - - - 100 559 430 - - - 1275
DJ 100 100 - - - 100 392 750 - - - 600
S4,5 57 76 75 54 40 93 793 610 825 1137 3700 675
S4,7 79 83 80 54 60 92 748 680 910 1223 2426 686
S4,10 81 81 75 50 50 93 715 650 898 1189 3463 687
H6,4 100 100 100 100 100 97 722 976 1520 2638 17262 667

Mean
Values

89

92

86

65

70

97

684

674

880

1547

6205

745

Constrained case: the welded beam design problem. HKA was compared to other
metaheuristics specifically designed for solving constrained problems. In these experiments,
HKA handles constraints via a new objective function which includes penalty functions (see
relation (2)).

A welded beam is designed for minimum cost subject to constraints on shear stress τ (q),
bending stress in the beam σ (q), buckling load on the bar Pc, end deflection of the beam δ (q), and
side constraints (Rao, 1996). There are four design variables as shown in Figure 10: h (denoted
q1), l (denoted q2), t (denoted q3) and b (denoted q4), q = [q1, q2, q3, q4]

T.

Figure 10 - Welded beam design problem.

The problem can be mathematically formulated as follows:

Minimize)()1()(24322
2
11 qLqqcqqcqJ +++=

Subject to:

0)()(

0)()(

0)(

05)()(

0)(

0)()(

0)()(

7

6

15

2432114

413

2

1

≤−=
≤−=

≤−=
≤−++=

≤−=
≤−=

≤−=

qPcPqg

qqg

qhqg

qLqqcqcqg

qqqg

qqg

qqg

max

min

max

max

δδ

σσ
ττ

(29)

Where:











−===































 ++=






 ++=






 +=

==++=

G

E

L

q

L

qqE
qPc

qEq

PL
q

qq

PL
q

qqq
qqI

qqq
R

q
LPM

I

MR

qq

P

R

q
q

42
1

36/013.4
)(,

4
)(,

6
)(

212
22,

24
,

2

,
2

,
2

2)(

3
2

6
4

2
3

2
34

3

2
34

2

31
2
2

21

2

31
2
22

2

21

1
2
2

2
21

2
1

δσ

τττττττ

 (30)

h

t

l
L b

P

and:

447

73
21

103,1036.1,25.0,125.0,102.1

103,14,106,04811.0)(,10471.0)(

×=×===×=

×==×===

maxmaxmaxminhG

ELPqcqc

στδ
 (31)

The ranges of design variables are: 21.0,101.0,101.0,21.0 4321 ≤≤≤≤≤≤≤≤ qqqq .

This problem has been solved by Deb, (1991) using a genetic algorithm (GA) with binary
representation, and a traditional penalty function. It has also been solved by Ragsdell & Phillips,
(1976) using geometric programming (GP). Recently, this problem has been solved by Coello,
(2000) using a GA-based co-evolution model as well as a multi-objective genetic algorithm
(MGA) (Coello, 2002; Coello & Montes, 2002). More recently, this problem has also been solved
by He and Wang using a co-evolutionary particle swarm optimization (CPSO) and have found a
better solution than those previously obtained (He & Wang, 2007).

In this experiment we performed the minimization problem 30 times and we compared our
results with those obtained via the methods listed in Table 10. The following parameters have
been used: Number of points N = 50, Number of best candidates Nξ = 5, α = 0.3.

Table 10. List of the methods used in our comparisons.

Method Reference
Geometric Programming (GP)

Genetic Algorithm and Penalty function (GAP)

Co-Evolutionnary Genetic Algorithm (CEGA)

Multi-objective Genetic Algorithm (MGA)

Co-evolutionary Particle Swarm Optimization (CPSO)

Ragsdell & Phillips, 1976

Deb, 1991

Coello, 2000, 2002

Coello & Montes, 2002

He & Wang, 2007

The best solutions obtained by the above-mentioned approaches are listed in Table 11 and the
statistical results are shown in Table 12.

Table 11. Comparison of the best solution found by different methods.

 GP GAP CEGA MGA CPSO HKA
q1 (h) 0.245500 0.248900 0.208800 0.205986 0.202369 0.205624
q2 (l) 6.196000 6.173000 3.420500 3.471328 3.544214 3.473825
q3 (t) 8.273000 8.178900 8.997500 9.020224 9.048210 9.038561
q4 (b) 0.245500 0.253300 0.210000 0.206480 0.205723 0.205738
g1(q) -5743.826517 -5758.603777 -0.337812 -0.074092 -12.839796 -5.621131
g2(q) -4.715097 -255.576901 -353.902604 -0.266227 -1.247467 -14.103308
g3(q) 0.000000 -0.004400 -0.001200 -0.000495 -0.001498 -0.000115
g4(q) -3.020289 -2.982866 -3.411865 -3.430043 -3.429347 -3.432290
g5(q) -0.120500 -0.123900 -0.083800 -0.080986 -0.079381 -0.080624
g6(q) -0.234208 -0.234160 -0.235649 -0.235514 -0.235536 -0.235550
g7(q) -3604.275002 -4465.270928 -363.232384 -58.666440 -11.681355 -1.595159
J(q) 2.385937 2.433116 1.748309 1.728226 1.728024 1.7255393

Table 12. Statistical results.

Method

Best

Mean

Worst

Std Dev
Average number of
function evaluations

GP 2.385937 - - - -
GAP 2.433116 - - - -
CEGA 1.748309 1.771973 1.785835 0.011220 900000
MGA 1.728226 1.792654 1.993408 0.074713 80000
CPSO 1.728024 1.748831 1.782143 0.012926 200000
HKA 1.725539 1.725824 1.726287 0.000172 18600

From Table 11, it can be seen that the best feasible solution found by HKA is better than the best
solutions found by other techniques. From Table 12, it can be seen that the average searching
quality of HKA is also significantly better than those of other methods, and even the worst
solution found by HKA is better than the best solution found via CPSO method. Note also that
the standard deviation of the results obtained by HKA is very small. In addition, the number of
function evaluations is significantly lower than those obtained by the other methods.

APPLICATION OF STOCHASTIC OPTIMIZATION TO ROBUST STRUCTURED
CONTROL AND FAULT DETECTION IN INDUSTRIAL SYSTEMS

1. Robust structured control

The problem of designing a robust controller with a given fixed structure (e.g. a MIMO PID)
remains an open issue (Toscano & Lyonnet, 2009). This is mainly due to the fact that the set of
all fixed-order/structure stabilizing controllers is non-convex and disconnected in the space of
controller parameters. This is a major source of computational intractability and conservatism.
Nevertheless, due to their practical importance, some approaches for structured control have been
proposed in the literature. Most of them are based on the resolution of Linear Matrix Inequalities
LMIs. However, a major drawback with this kind of approaches is the use of Lyapunov variables,
whose number grows quadratically with the system size. For instance, if we consider a system of
order 70, this requires, at least, the introduction of 2485 unknown variables whereas we are
looking for the parameters of a fixed-order/structure controller which contains a comparatively
very small number of unknowns. It is then necessary to introduce new techniques capable of
dealing with the non-convexity of certain problem arising in automatic control without
introducing extra unknown variables. We will show that stochastic methods can be used to this
end.

1.1. Formulation of the optimization problem.

Figure 11 – Block diagram of the feedback control system.

Consider the general feedback setup shown in Figure 11, in which G(s) represents the transfer
matrix of the process to be controlled

















=







=









22212

12111

21

)(,)(:with

DDC

DDC

BBA

sG
u

w
sG

y

z
 (32)

zm

z1

G(s)

K(s)

w1

y

u

wm { z } w

and K(s) is, for instance, the transfer matrix of a PID controller7

















+
−−=








=

+
++=

dp

d

i

KK

KK
dip

KKII

KI

K

DC

BA

s

s
K

s
KKsK

τ

τττ 1

11
20

00

1

1
)((33)

where Kp is the proportional gain, Ki and Kd are the integral and derivative gains respectively, and
τ is the time constant of the filter applied to the derivative action. This low-pass first-order filter
ensures the properness of the PID controller and thus its physical realizability. In addition, since
G(s) is strictly proper (i.e. it is assumed that D22 = 0), the properness of the controller ensures the
well-posedness of feedback loop.

As depicted Figure 11, the closed-loop system has m external input vectors
mww n

m

n
ww RR ∈∈ ,,1

1 L and m output vectors mzz n

m

n
zz RR ∈∈ ,,1

1 L . Roughly speaking, the

global input vector w = [w1 … wm]T captures the effects of the environment on the feedback
system; for instance noise, disturbances and references. The global output vector z = [z1 … zm]T
contains all characteristics of the closed-loop system that are to be controlled. To this end, the

controller K(s) utilizes the measured output vector yn
y R∈ , to elaborate the control action vector

unu R∈ which modify the natural behavior of the process G(s).
The objective is then to determine the PID parameters (Kp, Ki, Kd, τ) allowing to satisfy some

performance specifications such as: a good set point tracking, a satisfactory load disturbance
rejection, a good robustness to model uncertainties and so one. A powerful way to enforce these
kinds of requirements is first to formulate the performance specifications as an optimization
problem and then to solve it by an appropriate method. In the HHHH∞ framework, the optimization
problem can take one of the following forms:

Minimize T
dipzw KKKqqsTqJ])(vec)(vec)(vec[,),()(

11
τ==

∞∞

Subject to: { }

0),()(

0),()(

0)),(Re(maxarg)(

22

)(
1

22

≤−=

≤−=

≤−∀=

∞

∞

mzwm

zw

mini
q

qsTqg

qsTqg

iqqg

mm

i

γ

γ

λλ
λ

M

(34)

or also:

Minimize { } T
dipi

q
KKKqiqqJ

i

])(vec)(vec)(vec[,)),(Re(maxarg)(
)(

τλ
λλ =∀=

Subject to:

0),()(

0),()(

0),()(

22

11

22

11

≤−=

≤−=

≤−=

∞

∞

∞

mzwm

zw

zw

qsTqg

qsTqg

qsTqg

mm
γ

γ

γ

M

(35)

7 Due to its large diffusion, we consider a PID controller, but the described approach apply for any other fixed structure controller.

where),(qsT
ii zw denotes the closed-loop transfer matrix from wi to zi,

qn
q R∈ is the vector of

decision variables regrouping the entries of the matrices Kp, Ki, Kd, and the time constant τ, λi(q)
denotes the i th pole of the closed-loop system and s is the Laplace variable. In the formulation
(34) the constraint g1(q) is required to ensure the stability of the closed-loop system. To do so, the
parameter λmin must be set to a negative value.

Note that the formulations (34) and (35) are quite general and can be used to specify many
control objectives. For instance, the formulation (34) includes the PID loop-shaping design
problem whereas (35) includes the single or mixed sensitivity PID control problem. In the
numerical experiments we will see some applications belonging to theses two kind of control
problems.

The constrained optimization problem (34) or (35) can be transformed into an unconstrained
one, by introducing a new objective function which includes penalty functions (see relation (2)
and (3)).

Remark concerning the feasibility issue. In many engineering problems the bounds of a feasible
search domain are often known a priori because they are linked to purely material, physical
considerations. This is not so clear in control problem for which we have to impose a priori an
hyperbox search domain containing stabilizing controllers (i.e. potential solutions of the optimal
HHHH∞ problem). Finding a priori such a hyperbox is not trivial at all. However, for a given hyperbox
search domain it is possible, using HKA, to say whether or not the problem is feasible. More
precisely, the feasibility problem can be stated as follows. Given the hyperbox search domain
DDDD = { qiiii niqqqRq ,,1,: L=≤≤∈ } is there a stabilizing controller? This important issue

can be treated via HKA by solving the following optimization problem:

Minimize { }iqqJ i

qi

∀=)),(Re(maxarg)(
)(

λ
λλ

Subject to:
qiii

niqqq ,,1, L=≤≤

(36)

where λi(q) represents the ith pole f the closed-loop system. Let q* the solution found by HKA to
the problem (36). If Jλ(q*) < 0, then the problem is feasible within D. In the opposite case,
because of the stochastic nature of HKA, this does not necessarily mean that the problem is not
feasible (in this case we will say that the problem is probably not feasible).

1.2. Numerical experiments

Mixed sensitivity approach. In this example, for comparison purpose, the same optimization8
problem as the one presented in Kim, Maruta & Sugie, (2008), is considered:

Minimize { } []Ti

q
qqqqqiqqJ

i
4321

)(
,)),(Re(maxarg)(=∀= λ

λλ

Subject to:

01),()()(

01),()()(

2

1

≤−=

≤−=

∞

∞

qsTsWqg

qsSsWqg

T

S

 (37)

8 Note that the optimization problem (37) is of the form (35).

where []Tqqqqq 4321= is the vector of decision variables, s is the Laplace variable, S(s,q) is

the sensitivity function defined as S(s,q) = 1/(1+L(s,q)), T(s,q) is the closed-loop system defined
as T(s,q) = L(s,q)/(1+L(s,q)), L(s,q) is the open-loop transfer function defined as L(s,q) =
G(s)K(s,q) where G(s) is the transfer function of the system to be controlled and K(s,q) is the
transfer function of the PID controller which depends upon the decision variable as follows:










+
++= − s

s

s
qsK qq

q

q
q

)(43

3

2

1

101

10

10

1
110),((38)

Note that the relationship between the decision variables of the optimization problem and the
parameters of the PID controller are defined as:

4321 10,10,10,10 qq
d

q
i

q
p NTTK ==== (39)

This is done to ensure a broader parameter space of (Kp, Ti, Td, N). The frequency-dependent
weighting functions WS(s) and WT(s) are set in order to meet the performance specifications of the
closed-loop system. The optimization problem (37), has been solved for the magnetic levitation
system described in Sugi, Simizu & Imura, (1993). The process model is defined as:

)99.13)(9.20)(55.22(

147.7
)(

++−
=

sss
sG (40)

The frequency-dependent weighting functions WS(s) and WT(s) are respectively given as:

24)10(

)88)(4.31)(066.0(867.43
)(,

1.0

5
)(

+
+++=

+
=

s

sss
sW

s
sW TS (41)

The search space is: 31,11,11,42 4321 ≤≤≤≤−≤≤−≤≤ qqqq . In this test, we

performed the minimization 30 times and we compared our results with those obtained via
ALPSO (Augmented Lagrangian Particle Swarm Optimization see Kim, Maruta & Sugie, 2008).
The following parameters have been used: N = 50, Nξ = 5 and α = 0.4. The best solutions obtained
via ALPSO and HKA are listed in Table 13 and the statistical results are shown in Table 14 (the
mark "-" means that the corresponding result is not available).

Table 13. Comparison of the best solutions found via ALPSO and HKA.

 ALPSO HKA
q1 3.2548 3.2542
q2 -0.8424 -0.8634
q3 -0.7501 -0.7493
q4 2.3137 2.3139
g1(q) 6.1e-3 -9.6e-4
g2(q) -4.0e-4 -1.2e-3
J(q) -1.7197 -1.7106

Table 14. Statistical results.

Method

Best

Mean

Worst

Std Dev
CPU time Average number of

function evaluations
ALPSO -1.7197 - - - 687 s 25000
HKA -1.7106 -1.7023 -1.6891 0.0048 266 s 5427

The better value of the objective function obtained with ALPSO is due to the violation of the
constraint g1(q), this is not at all the case in our solution for which all constraints are satisfied.
From Table 14 we can observe that the number of function evaluations and the related CPU time
are very small compared to ALPSO. It is interesting to note that if, as in ALPSO, a small
violation of the constraint g1(q) is tolerated, we obtain the results listed in Table 15 and Table 16.

Table 15. Comparison of the best solutions found via ALPSO and HKA.
 ALPSO HKA

q1 3.2548 3.2556
q2 -0.8424 -0.8354
q3 -0.7501 -0.7539
q4 2.3137 2.3127
g1(q) 6.1e-3 4.9e-3
g2(q) -4.0e-4 -2.8e-3
J(q) -1.7197 -1.7435

Table 16. Statistical results.

Method

Best

Mean

Worst

Std Dev
CPU time Average number of

function evaluations
ALPSO -1.7197 - - - 687 s 25000
HKA -1.7435 -1.7381 -1.7323 0.0030 248 s 5072

From Table 15, it can be seen that the best solution found by HKA is significantly better than the
solution found by ALPSO with, in addition, a smaller violation constraint. Table 16, shows that
the worst solution found by HKA is better than the solution found via ALPSO, in addition, the
number of function evaluations (and so the corresponding CPU time) remains very small
compared to ALPSO.

HHHH∞∞∞∞ norm minimization. This example is borrowed from Maruta, Kim, & Sugie (2008) which
utilises a PSO method for solving the following constrained optimization9 problem:

Minimize []Twz qqqqqsTqJ 921 ,),()(L==
∞∞

Subject to: { } 0)),(Re(max
)(

<∀iqi
qi

λ
λ

 (42)

where),(qsTwz is the transfer matrix of the closed-loop system, composed by the process G(s)

and the controller K(s) (see figure 11). In this example the controller is a first order output
feedback described by:

















=

987

654

221

),(

qqq

qqq

qqq

qsK (43)

9 Note that the optimization problem (42) is of the form (34).

where q is the decision vector which have to be set in order to satisfy (42). The transfer matrix
G(s) of the process to be controlled is given by:



















































−
−

−
−

−
−

−−−−−
−−−−−−

−

=

008571.142000206.1390000010

0008571.142000206.139000001

01.0000000000000

001.000000000000

0000000000010

0000000000001

0010240010000000000

0001024001000000000

00000.40025.100000

00001146.0008289.273.00000

0087.00115.000000029.0014.0029.0852.0

0.30.190000000.120344.06.00.120.12

8.016.00000005.10057.005.15.1

00000000000.100

)(sG

(44)

The objective is to find a stabilizing q which minimizes the H∞ norm of the closed-loop transfer
matrix. The search space is: 9,1,1515 K=≤≤− ixi

. We performed the minimization 35 times

(N = 50, Nξ = 2, α = 0.5) and we compared our results with those obtained in Maruta, Kim, &
Sugie (2008) . Tables 17 and 18 summarize de results of this experiment.

Table 17. Comparison of the best solutions found via PSO and HKA.
 q1 q2 q3 q4 q5 q6 q7 q8 q9
PSO -21.1183 -1.5886 11.0822 -2.9907 0.4011 -0.5268 -20.0049 0.4298 -0.9064

HKA -33.1421 -2.2374 14.8739 -3.2335 0.4748 -0.6776 -25.5573 0.5167 -0.0761

Table 18. Statistical results (comparison between PSO and HKA).
Method Best Mean Worst Std Dev CPU-time Nb iter

PSO 1.7092 1.7775 2.3732 0.0996 650 seconds -
HKA 1.6634 1.7326 2.2377 0.0964 45 seconds 126

From Table 18, we can see that the best solution found by HKA is significantly better than the
solution found in Maruta, Kim, & Sugie (2008). The same is true for the mean, worst and
standard deviation. In addition, the computation time is very very small compared to PSO.

2. Robust residual generator

In this section, we introduce a simple but effective synthesis strategy for observers based faults
detection in linear time-invariant (LTI) systems which are simultaneously affected by two classes
of unknown inputs: Noises having fixed spectral densities and unknown finite energy
disturbances Khosrowjerdi, Nikoukhah & Safari-Shad, (2005). The problem of designing such an
observer, also called a residual generator, will be formulated as a mixed H2/H∞ optimization
problem. This is done to obtain an optimal residual generator, i.e. with minimal sensitivity to
unknown inputs. Unfortunately, there is no known solution to this difficult optimization problem.
Finding such a residual generator is known to be computationally intractable via the conventional
techniques (Toscano & Lyonnet, 2009). This is mainly due to the non-convexity of the resulting
optimization problem. To solve this kind of problem easily and directly, without using any
complicated mathematical manipulations, we utilize stochastic methods for the resolution of the
underlying constrained non-convex optimization problem. A numerical example is given to
illustrate the advantage of the mixed H2/H∞ optimization approach against existing techniques
which are based on optimization of H2 or H∞ criteria.

2.1. Formulation of the optimization problem

We assume that the system to be monitored can be described by the following state space model









=

++++=

++++=

0)0(

)()()()()()(

)()()()()()(

xx

tfDtwDtvDtuDtCxty

tfBtwBtvBtuBtAxtx

fwvu

fwvu&

 (45)

where xnx R∈ is the state vector, unu R∈ and yn
y R∈ are, respectively, the known input and

output vectors. The unknown input wnw R∈ represents the process/measurement noises, it is

assumed to be of fixed spectral density. The unknown input vnv R∈ is assumed to be a finite
energy disturbance modelling errors caused by exogenous signals, linearization or parameter

uncertainties. The unknown input fn
f R∈ is the fault vector; when f = 0, system (45) describes

the fault-free system (i.e. the normal operating mode). The various constant matrices of (45) are
assumed to be known and are of appropriate dimensions. It must be noticed that (45) is an
augmented plant model which includes all the weighting functions reflecting the knowledge of w
and v. The objective is to develop a residual generator which generates, from the known
input/output (i.e. u(t) and y(t)), a set of residual signals r(t) that are robust to unknown inputs (i.e.
v(t) and w(t)) and sensitive to the faults f(t). In these conditions, we can conclude that a fault has
occurred if some norm of r(t) is larger than a prespecified threshold or if there are some changes
in the statistical properties of the residual signals. This objective can be reached by using an
observer-based residual generation. Consider then the following Luenbeger observer-based
residual generation:









=

−−=

−−++=

0)0(

)()()()(

))()()(()()()(

zz

tCztuDtytr

tCztuDtyLtuBtAztz

u

uu&

 (46)

where xnz R∈ is the state vector of the observer and yx nn
L

×∈ R is the matrix gains to be
designed to ensure the stability of the observer as well as the robustness of the residuals to
unknown inputs. Combining (45) and (46), we obtain:









=

+++=

+++=

0)0(

)()()()()(

)(
~

)(
~

)(
~

)(
~

)(

ee

tfDtwDtvDtCetr

tfBtwBtvBteAte

fwv

fwv&

 (47)

Where zxe −= , LCAA −=~
, vvv LDBB −=~

, www LDBB −=~
 and fff LDBB −=~

. Note that

the stability of the residual generator is guaranteed by ensuring that the matrix A
~

 is Hurwitz.
Taking the Laplace transform of (47), we obtain:

)()()()()()()()(0 sfsGswsGsvsGesGsr fwve +++= (48)

where the transfer matrices Ge(s), Gv(s), Gw(s) and Gf(s) are defined as: 1)
~

()(−−= AsICsGe ,

vvev DBsGsG += ~
)()(, wwew DBsGsG += ~

)()(and ffef DBsGsG += ~
)()(.

We want the residual r insensitive to unknown inputs and initial conditions, and sensitive to
faults. The stability of the observer will ensure the decay to zero of the effect of nonzero initial
conditions e0. Robustness as well as insensitivity to load disturbance can be achieved by

satisfying γ≤
∞

),(LsGv , with γ as small as possible. However, this kind of requirement can

also lead to reduction of sensitivity to faults and to an increase of sensitivity to noise. Thus, in

addition to γ≤
∞

),(LsGv , we have to minimize the influence of noise and to maximize the

effect of faults. This can be done by solving the following mixed H2/H∞ optimization problem:

Minimize

∞

=
),(

),(
)(2

LsG

LsG
LJ

f

w
mix

Subject to:

{ }

[] qqq

qq

qq

qq

qL

iLLg

LsGLg

ji

nnn

yn

yn

ij

mini
L

v

yxx

i

≤≤==

≤−∀=

≤−=





















∞

,

1

221

111

)(
2

1

,

0)),(Re(maxarg)(

0),()(

L

MMM

L

L

λλ

γ

λ

(49)

where L = [qij] is the matrix of decision variables, q and q are the bounds of the hyperbox

search domain. In the constraint g2(L), the quantity λi(L) denotes the i th pole of the observer. The
parameter γ, is used to trade off between detection performance and noise sensitivity.

2.2. Numerical experiments

Consider the problem of fault detection in a four-tank process. The state-space process model is
given by:

)()(
005.00

0005.0
)(),(

0313.00

00357.0

00

00

))()((

00312.0

0479.00

0718.00

00833.0

)(

0333.0000

00419.000

0333.000111.00

00419.000159.0

)(

twtxtytv

tftutxtx

+=

−
−

+

++

−
−

−
−

=






























































&

 (50)

where the state vector x = [x1 x2 x3 x4]

T represents the level of water in the tanks, the control input
u = [u1 u2]

T is the voltage applied to the pumps, f = [f1 f2]
T is the fault vector associated to the

pumps, v = [v1 v2]
T is the disturbance vector and w = [w1 w2]

T is the measurement noise vector.
The objective is to detect the actuator fault f in the presence of a disturbance v and the
measurement noise w. To evaluate the performance of the residual generator, a fault f1 and a
disturbance v1 are applied (see Figure 12).

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

Time (s)

f1

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

v1

Figure 12 – Pump fault and disturbance.

The synthesis of the mixed H2/H∞ residual generator was done by solving the optimisation
problem (49) via HKA. The following parameters have been used: N = 50, Nξ = 5, α = 0.4,

1−=q , 1=q , λmin = -0.01 and γ = 0.08. Figure 13 shows the simulation result obtained with the

resulting residual generator. This figure describes the evolution of the absolute value of the
residual r1(t). We can see that the effect of the disturbance v1(t) on the residual r1(t) is strongly
attenuated and the effect of the fault is significantly bigger than that of v1(t). Therefore, this fault
can be easily detected by using an appropriate threshold. The ratio between the maximum values
of the effect of the fault to the maximum value of the effect of the disturbance is 2.6. This ratio is
only of 1.8 by using the approach proposed by Khosrowjerdi et al. (2005). This clearly shows the
better performance of the proposed approach. Indeed, HKA allows to solve directly the
optimisation problem (49) without using any upper bound nor transforming the non-convex
problem into a convex one, as it is the case in Khosrowjerdi et al. (2005).

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (s)

|r1|

Figure 13 – Evolution of |r1(t)|, mixed H2/H∞, γ = 0.08.

For comparison, Figure 14 shows the result obtained when the residual generator is designed by
just solving the H2 optimisation problem:

[]
{ }






≤−∀=

=

0)),(Re(maxarg)(

),(),(

)(

2
minarg

mini
L

wv
L

opt

iLLg

LsGLsG

i

L

λλ
λ

 (51)

Similarlely, Figure 14 shows the result obtained by just solving the H∞ optimisation problem

[]
{ }






≤−∀=
∞

=

0)),(Re(maxarg)(

),(),(

)(

minarg

mini
L

wv
L

opt

iLLg

LsGLsG

i

L

λλ
λ

 (52)

As we can see, the corresponding residual generators cannot be used to detect the fault f1(t). This
confirms the usefulness of a mixed H2/H∞ synthesis.

Evolution of |r1(t)|, H2 synthesis

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (s)

|r1|

Evolution of |r1(t)|, H∞ synthesis

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

|r1|

Figure 14 – Evolution of |r1(t)|, in a H2 and H∞ framework respectively.

CONCLUSION

It is a matter of fact that Nature has been, and is always, a major source of inspiration for
scientific and technical developments. Optimization does not escape to this rule and many
heuristic searches draw their foundations from physical or biological principles such as the main
approaches reviewed in this chapter. Although they are pale imitations of the reality, these
approaches have proven their efficiency in solving difficult optimizations problems. One of the
main purposes with this chapter was to provide the essential ideas behind each presented
optimization method as well as the algorithm and the usually adopted parameter setting. This
could help the reader in the practical use of these methods. In addition to the standard stochastic
algorithm, we have presented the recently developed optimization method called HKA. This new
approach has been compared favourably with many other metaheuristics on several test problems,
both in the unconstrained and constrained cases. No general conclusion can be drawn from these
few numerical experiments, but it seems that, in some cases, HKA is a good alternative for
solving difficult non-convex problems.

The efficiency of stochastic methods in solving difficult non-convex problem has been shown
on many practical examples. Notably, we have addressed the problems of robust structured
control and fault diagnosis of industrial systems. These topics lead indeed to non-convex
constrained optimization problems which are known to be difficult to deal with using
conventional methods. Since stochastic methods does not require strong assumptions such as
linearity, differentiability, convexity etc. they can be used to find out, in a straightforward
manner, if not the optimal solution but at least a suboptimal one, which is very useful for the
practitioner.

APPENDIX

A1. List of test functions F1 to F9

Easom's function (F1) (2 variables):)))()((exp()cos()cos()(2
2

2
121 ππ −+−−−= qqqqqJ

search domain: -100 ≤ qi ≤ 100, i = 1, 2; global minimum: qop t= (π, π), J(qop) = -1.

Goldstein-Price's function (F2) (2 variables); search domain: -2 ≤ qi ≤ 2, i = 1, 2; global
minimum: qopt = (-1, 0), J(qop) = 3. For a complete definition of this function see Socha & Dorigo,
(2008).

Hartmann's function (F3) (3 variables); search domain: 0 ≤ q i≤ 1, i = 1, 3; global minimum:
qopt = (0.1146, 0.5556, 0.8525), J(qop) = -3.86278. For a complete definition of this function see
Socha & Dorigo, (2008).

Rastrigin's function (F4) (5 variables)

∑ =
−+= 5

1

2))2cos(10(50)(
i ii qqqJ π

search domain: -3 ≤ qi ≤ 3, i = 1, 5; global minimum: qop t= 0, J(qop) = 0.

Zakharov's function (F5) (5 variables)

() ()45

1

25

1

5

1

2 5.05.0)(∑∑∑ ===
++=

i ii ii i iqiqqqJ

search domain: -6 ≤ qi ≤ 12, i = 1, 5; global minimum: qop t= 0, J(qop) = 0.

Michalevicz's function (F6) (10 variables)

∑ ∑= = 

















−= 10

1

20

5

1

2

sin)sin()(
i i

i
i

iq
qqJ

π

search domain: 0 ≤ qi ≤ π, i = 1, 10; global minimum: J(qop) = 9.66015.

Levy's function (F7) (30 variables)

30,,1,
4

1
1 L=−+= i

q
z i

i

))12(sin1()1())]1(sin101()1[()(sin)(30
22

30

29

1

22
1

2 ++−+++−+= ∑ =
zzzzzqJ

i ii πππ

search domain: -10 ≤ qi ≤ 10, i = 1, 30; global minimum: qop t= (1,1,…,1), J(qop) = 0.

Constrained test problem (F8) (3 variables)

Maximise

321

321

321

321

37

24

2

8.023
)(

qqq

qqq

qqq

qqq
qJ

−+
+−

+−
+−+

+=

Subject to:

01.2971212)(

01)(

01.46)(

08.3412512)(

01)(

3215

3214

3213

3212

3211

≤−++=

≤+−+−=

≤+++−=

≤−++=

≤−−+=

qqqqg

qqqqg

qqqqg

qqqqg

qqqqg

search domain: 0 ≤ qi ≤ 10, i = 1, 3; global minimum: qop t= (1,0,0), J(qop) = 2.471428$.

Constrained test problem (F9) (5 variables)
Minimise)54321exp()(qqqqqqJ =

Subject to:

01)(

05)(

010)(

3
2

3
13

54312

2
5

2
4

2
3

2
2

2
11

=++=

=−=

≤−++++=

qqqg

qqqqqg

qqqqqqg

search domain: -2.3 ≤ qi ≤ 2.3, i = 1, 2; -3.2 ≤ qi ≤ 3.2, i = 3, 4, 5; global minimum:
qop t= (-1.717143, 1.595709, 1.827247, -0.7636413, -0.7636450), J(qop t) = 0.053950.

A.2. Test functions RC, B2, DJ, S4,5, S4,7, S4,10, and H6,4

Branin's function (RC) (2 variables)

101

2

1
2
122 cos

8

1
1106

5

4

1.5
)(+















 −+−+−= qqqqqJ
πππ

search domain: -5 ≤ qi ≤ 10, i = 1, 2; three global minima qop t= (-π, 12.275), (π, 2.275), (9.42478,
2.475), J(qop t) = 0.397887.

Bohachecsky's function (B2) (2 variables)

7.0)4cos(4.0)3cos(3.02)(21
2
2

2
1 +−−+= qqqqqJ ππ

search domain: -100 ≤ qi ≤ 100, i = 1, 2; global minimum qop t= (0, 0), J(qop t) = 0.

De Jong's function (DJ) (3 variables)

2
3

2
2

2
1)(qqqqJ ++=

search domain: -5 ≤ qi ≤ 5, i = 1, 3; global minimum qop t= (0, 0, 0), J(qop t) = 0.

Shekel's functions S4,5, S4,7, S4,10 (4 variables); search domain: 0 ≤ qi ≤ 9, i = 1, 4; 3 functions
were considered S4,5, S4,7, S4,10. For a complete definition of these function see Socha & Dorigo,
(2008).

Hartmann's functions H6,4 (6 variables); search domain: 0 ≤ qi ≤ 1, i = 1, 6; global minimum:
J(qop t) = -3.322368. For a complete definition of this function see Socha & Dorigo, (2008).

REFERENCES

Angeline, P. J. (1998). Using selection improve particle swarm optimization. In Proceedings of
the IEEE International Conference on Evolutionary Computation (pp. 84-89). Piscataway, New
Jersey, USA: IEEE Press.

Ben-Ameur, W. (2004). Computing the Initial Temperature of Simulated Annealing.
Computational Optimization and Applications, 29(3), 369-385.

Bilbro, G. L., & Snyder, W.E. (1991). Optimization of Functions with Many Minima. IEEE
Transactions on Systems, Man, and Cybernetics, 24(4), 840-849

Blum, C., & Li, X. (2008). Swarm Intelligence in Optimization. In C. Blum & D. Merkle (Eds.),
Swarm Intelligence Introduction and Applications (pp. 43-85). Springer Berlin Heidelberg.

Bohachevsky, I. O., Johnson, M. E., & Stein M. L. (1986). Generalized simulated annealing for
function optimization. Technometrics, 28(3), 209-217.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. New York: Cambridge University
Press.

Boyd, R., & Richardson, P. (1985). Culture and the evolutionary process. Chicago: University of
Chicago Press.

Brook, S. P., & Morgan, B. J. T. (1995). Optimization using simulated annealing. The statistician,
44(2), 241-257.

Cerny, V. (1985). A thermodynamical approach to the travelling salesman problem: an efficient
simulation algorithm. Journal of Optimization Theory and Applications, 43(1), 41-51.

Chelouah, R., & Siarry, P. (1999). Enhanced Continuous Tabu Search: An Algorithm for the
Global Optimization of Multiminima Function. In S. Voss, S. Martello, I.H. Osman & C.
Roucairol (Ed.), Meta-Heuristics, Advances and Trends in Local Search Paradigms for
Optimization (pp. 49-61). Kluwer Academic Publishers.

Chelouah, R., & Siarry, P. (2000). A continuous genetic algorithm designed for the global
optimization of multimodal functions. Journal of Heuristics, 6(2), 191-213.
year=2000}

Chipperfield, A., Fleming, P., Pohlheim, H., & Fonseca, C. (1995). Genetic Algorithm
TOOLBOX For Use with MATLAB.

Clerc M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a
multidimensional complex space. IEEE Transactions on Evolutionary computation, 6(1), 58-73.

Coello, C.A.C. (2000). Use of a self-adaptive penalty approach for engineering optimization
problems. Computers in Industry, 41(2), 113-127.

Coello, C.A.C. (2002). Theoretical and numerical constraint handling techniques used with
evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics
and Engineering, 191(11-12), 1245-1287.

Coello, C.A.C. & Montes, E.M. (2002). Constraint-handling in genetic algorithms through the
use of dominance-based tournament selection. Advanced Engineering Informatics, 16(3), 193-
203.

Corana, A., Marchesi, M., Martini, C., & Ridella, S. (1987). Minimising Multimodal Functions of
Continuous Variables with the Simulated Annealing Algorithm. ACM Transactions on
Mathematical Software, 13(3), 262-280.

Deb, K. (1991). Optimal design of a welded beam via genetic algorithms. AIAA Journal, 29(11),
2013-2015.

Devicharan, D., (2003). pso.m. Available at http://web.syr.edu/~ddevicha/pso.m.

Dréo, J., Pétrowski, A., Siarry, P., & Taillard, E. (2006). Metaheuristic for hard optimization.
Berlin: Springer-Verlag.

Eiben, A.E., & Schoener, M. (2002). Evolutionary computing. Information processing letter,
82(1), 1-6.

Fogel, D.B. (2006). Evolutionary computation: towards a new philosophy of machine
intelligence. Wiley-IEEE Press.

Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness. San Francisco: Freeman, CA.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Kluwer Academic Publishers, Boston, MA.

Hajek, B. (1988). Cooling schedules for optimal annealing. Mathematics of Operation Research,
13(2), 311-329.

He, Q., & Wang, L. (2007). An effective co-evolutionary particle swarm optimization for
constrained engineering design problems. Engineering Applications of Artificial Intelligence,
20(1), 89-99.

Holland, J. H. (1962). Outline for logical theory of adaptive systems. Journal of the ACM, 9(3),
297-394.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor: University of
Michigan Press.

Ingber, L. (1994). Simulated annealing: practice versus theory. Math. Comput. Modelling, 18(11),
29-57.

Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of IEEE
International Conference on Neural Networks (pp. 1942-1948). Piscataway, NJ, USA: IEEE
Press.

Kim, T.H., Maruta, I., & Sugie, T. (2008). Robust PID controller tuning based on the constrained
particle swarm optimization. Automatica, 44(4), 1104-1110.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing.
Science, 220(4598), 671-680.

Khosrowjerdi, M. J., Nikoukhah, R., & Safari-Shad N. (2005). Fault detection in a mixed
H2/Hinf setting. IEEE Transactions on Automatic Control, 50(7), 1063-1068.

Lobo, F., Lima, C. F., & Michalewicz, Z. (Eds.). (2007). Parameter Setting in Evolutionary
Algorithms. Studies in Computational Intelligence. Berlin, Springer Verlag.

Locatelli, M. (2000). Convergence of a simulated annealing algorithm for continuous global
optimization. Journal of Global Optimization, 18(3), 219-234.

Lovberg, M., & Krink, T. (2002). Extending particle swarm optimizers with self-organized
criticality. In Proceedings of the fourth congress on evolutionary computation, Vol. 2 (pp. 1588-
1593).

Maruta, L., Kim, T.H., & Sugie, T. (2008). Synthesis of fixed-structure Hinf, controllers
via Constrained Particle Swarm Optimization. Proc. of the 17th IFAC World Congress, Seoul,
Korea, pp. 7843-7848.

Maybeck, P. S. (1979). Stochastic models, estimation, and control. New-York: Academic Press.

Miller, B. L., & Goldberg, D. E. (1995). Genetic algorithms, tournament selection, and the effects
of noise. Complex Systems, 9(3), 193-212.

Metropolis, N. , Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., & Teller, E. (1953).
Equations of state Calculations by Fast Computing Machines. Journal of Chemical Physics,
21(6):1087-1092.

Michalewicz, Z. (1998). Genetic Algorithms + Data Structures = Evolution Programs. Springer-
Verlag, Berlin.

Parks, G.T. (1990). An intelligent stochastic optimization routine for nuclear fuel cycle design.
Nucl. Technol., 89(2), 233-246.

Pincus, M. 1970. A Monte Carlo Method for the Approximate Solution of Certain Types of
Constrained Optimization Problems. Oper. Res, 18, 1225-1228.

Ragsdell, K.M., & Phillips, D.T. (1976). Optimal design of a class of welded structures using
geometric programming. ASME Journal of Engineering for Industries, 98(3), 1021-1025.

Rao, S. S. (1996). Engineering Optimization. New York: Wiley.

Rockafellar, R. T. (1993). Lagrange multipliers and optimality. SIAM Review, 35(2), 183-238.

Siarry, P., Berthiau, G., Durbin, F., & Haussy, J. (1997). Enhanced Simulated Annealing for
Globally Minimizing Functions of Many Continuous Variables. ACM Transactions on
Mathematical Software, 23(2), 209-228.

Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. European
Journal of Operational Research, 185(3), 1155-1173.

Spall, J. C. (2003). Introduction to stochastic search and optimization. Wiley-Interscience, John
Wiley & Sons.

Sugi, T., Simizu, K., & Imura, J. (1993). Hinf control with exact linearization and its applications
to magnetic levitation systems. In IFAC 12th World congress, Vol. 4, 363-366.

Toscano, R., & Lyonnet, P. (in press). Heuristic Kalman Algorithm for solving optimization
problems. IEEE Transaction on Systems, Man, and Cybernetics, Part B.

Toscano, R., & Lyonnet, P. (in press). Mixed H2/Hinf residual generator design via Heuristic
Kalman Algorithm. Safeprocess’09, Barcelone, Spain.

Toscano, R., & Lyonnet, P. (in press). Robust PID controller tuning based on the Heuristic
Kalman Algorithm. Automatica.

Vandekerckhove, J. (2006). anneal.m. Available at http://pages.stern.nyu.edu/~acollard/anneal.m.

Vanderbilt, D., & Louie, S. G. (1984). A Monte Carlo simulated annealing approach to
optimization over continuous variables. Journal of Computational Physics, 56(2), 259-271.

