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Abstract: Materials wear is a very complex, only partially-formalized phenomenon involving numerous parameters 

and damage mechanisms. The need to characterize wear in many industrial applications prompted the 

present research. The study concerns an original strategy investigating the effect of contact conditions on 

the wear behavior of carburized stainless steels under fretting and reciprocating sliding motion. A physical 

model was constructed, and pre-treated experimental data were incorporated in a neural network to model 

wear volume. Three models are proposed and compared, according to input. 

1 INTRODUCTION 

Wear is generally defined as loss of surface material 

from contact surfaces subjected to relative motion. 

Tribologic issue must therefore be taken into 

consideration, and several models have been 

developed in recent years (Kolodziejczyk, 2010; 

Zhang, 2003). These models usually correlate wear 

volume with physical and geometrical quantities 

such as load, sliding distance, coefficient of friction, 

hardness, materials (Anand Kumar, 2013; Genel, 

2003; Sahraoui, 2004), and physical laws such as the 

Archard wear criterion (Archard, 1953). Many 

parameters influence wear. To identify one relevant 

parameter, we chose a neural network to model 

wear, creating an experimental database: the great 

advantage of Artificial Neural Networks (ANNs) is 

their ability to be used as an arbitrary function 

approximation mechanism which ‘learns’ from 

observed data. Fretting damage was used as a case 

study. Small oscillatory movements may induce 

interface fretting, shortening predicted lifetime. The 

interface wear response was modeled and empirical 

models were created based on data from fretting 

tests. The Artificial Intelligence model was validated 

against the physical description of fretting wear 

behavior.  

2 EXPERIMENTAL PROCEDURE 

2.1 Material and Contact Type 

Tests were performed on two chromium-

molybdenum stainless steels: one carburized 

stainless steel (M1) and one stainless steel with mass 

quenching (M2). The M1 specimen comprised 3 

layers: the external layer was hard and decarburized 

layer (white layer: WL); the second was the 

carburized phase (CL), with hardness gradient 

between 760 HV and 550HV (Figure 1a); the third 

was the bulk, with 500 HV hardness. These 

materials were studied to determine the wear 

kinetics of a two cross-cylinder configuration. 

According to Hertz, this configuration is equivalent 

to a sphere/plane configuration where M1 is mobile 

and M2 fixed. The two cylinders had the same 

radius (7.5 mm) and the same length (20 mm). The 

normal force was adjusted to reach 2,200 MPa 

Hertzian maximum contact pressure. Surface 

roughness was Ra=0.4µm for both materials.  



 

Figure 1: (a) Contact configuration (crossed cylinders); (b) Fretting setup; (c) Fretting cycle analysis. 

2.2 Test System 

Figure 1b shows a diagram of the fretting wear test. 

An MTS hydraulic tension-compression machine 

regulated displacement between cylinders (further 

details of this setup and experimental method used 

can be found in (Fouvry, 1996)). During the test, 

normal force P was kept constant by a feedback 

system, and the cyclic sinusoidal displacement δ* 

was applied to generate an alternating tangential 

load Q* on the contact. All tests were performed 

with a constant frequency of 3 Hz, at room 

temperature. This enabled the fretting loop Q-δ to be 

plotted for chosen cycles (Figure 1c). During tests, 

displacement amplitude was fixed between ±100µm 

and ±1000µm, leading to two generalized slip 

regimes: gross slip in fretting, and reciprocating. The 

first tests were performed with ±300µm 

displacement and different numbers of cycles, and 

the second with different displacement amplitudes 

δ* and numbers of cycles N. Because of system 

stiffness, the sliding amplitude δg was not always 

the same for a given displacement amplitude. For 

each test, slip was generalized in the interface, and 

the ratio Q*/P was supposed to be constant for any 

displacement amplitude.  

The ratio Q*/P was then defined as the coefficient of 

friction µ, and the dissipated energy Ed during the 

fretting cycle was given by the area of the 

corresponding hysteresis cycle (see Figure 1c). The 

accumulated friction energy was determined by 

summing friction loop energy over the whole test 

duration:  
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Wear volume (V) after testing was measured on a 

3D scan. Wear rate was established from wear 

volume versus accumulated friction energy 

(Archard, 1953).  Figure 2a compares evolution of 

wear volume in M1 and M2 specimens versus 

accumulated friction energy. Wear volume evolution 

was linear in M2 but showed a bilinear tendency in 

M1, linked to the structure of the M1 interface 

(Figure 1a): wears initially involved the brittle white 

Figure 2: (a) Evolution of wear volume VM1 and VM2; 

(b) Total wear volume evolution (V=VM1 + VM2) versus 

accumulated friction energy (Vth; αI and αII are defined 

from the δ=±300µm experiments). 



 

layer of M1 (WL) before reaching the subsurface 

carburized layer (CL), the wear rate was lower. It is 

noteworthy that, while the wear rate in the counter-

body was equivalent to that of the M1CL layer (II), 

that of the M1 top WL layer (I) displayed 

significantly (approx. 10-fold) higher wear kinetics. 

Total wear volume V = VM1 + VM2 is related to total 

accumulated friction energy (Figure 2b). 

Considering the difference between the top WL 

response and sub-carburized layer, a bilinear energy 

wear model can be introduced as follows:  

 If V < Vth, the interface involves the M1WL 

domain, and VEd = αI. ΣEd 

 If V > Vth, all the M1WL phase has been 

worn out and the interface involves only the 

M1CL sub-carburized layer, and VEd = αII. 

(ΣEd-Edth) + Vth 

where Edth=Vth/ αI, Vth is the threshold wear volume 

related to M1 white layer elimination (VWL) plus 

associated M2 wear. VWL can be expressed as a 

function of the contact area Af and the white layer 

thickness (hWL) (i.e., VWL =hWL. Af), where αI is the 

energy wear rate of the M2/M1WL interface, and αII 

is the energy wear rate of the M2/M1CL interface. 

Using this very simple physical model involving 

only 3 material parameters (Vth, αI, and αII), it is 

possible to express the total wear kinetics of the 

interface. The theoretical description is compared 

with the experimental results in Figure 3. The results 

related to δ*=+/-300µm fretting sliding are also 

compared with other results for fretting and large 

reciprocating sliding conditions. The regression 

coefficient is about R²=0.9045, which confirms the 

stability of the energy approach to formalizing wear 

rate even for a complex interface like that 

investigated here. 

3 MODELING WEAR 

EVOLUTION 

This wear behavior could not be predicted or 

expected initially, because of the bi-linear 

phenomenon, for which a static Neural Network was 

used to estimate wear evolution as a function of 

dissipated energy Ed with respect to mechanical 

variables and environmental conditions (Figure 4). A 

dynamic Neural Network could not be used because 

of the poor database. We propose 3 models with 

different key input parameters. The input data are P, 

δg, µ and N for the first network (Model_A), only 

Ed for the second (Model_B) and a combination of 

all 5 parameters for the third (Model_C). Model_A 

and Model_B could be expected to give the same 

results, as Ed can be approximated by the inputs of 

Model_A as shown in Eq.1. 

 
Figure 4: (a) Schematic description of the network 

structure; (b) Network training results. 

 

The structure adopted was a two layer network with 

9 neurons in the hidden layer and 1 in the output 

layer (Figure 4a). For the input layer, the transfer 

function was a sigmoidal tangent (tansig), and for 

the last layer a linear function (purelin). 

The three models were assessed by comparing 

experimental and predicted wear volume. The 

experiments performed with ±300µm displacement 

amplitude with different numbers of cycles 

constituted training data, and the other experiments Figure 3: Comparison of experimental (Vexp) and 

theoretical (VEd) wear volume 



Figure 5: (a) Test results of the three Neural Networks; (b) Variance results of the physical model and the three ANN 

models

 (±100µm to ±1,000µm with different numbers of 

cycles) represent the test data. Simulation could be 

expected to be difficult, as the network could not be 

trained on the variable δg. Figure 4b, however, 

shows excellent network training, with R²=1 for 

each model. To compare the models, the percentage 

square root of normalized variance was defined as 

follows: 
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where Xi is the experimental wear data, Ui the 

predicted wear data, Z the number of samples, and 

Vmax the maximum experimental wear volume.   

4 RESULTS AND DISCUSSION 

 
The variance σ of the physical energy wear model 

was about 14.2 % (Figure 3). All simulated wear 

volume results for the 3 models are presented in 

Figure 5a.  

Model_A was unable to predict wear volume, as the 

correlation was poor (σ = 44.2%). Model_B had 

only Ed input, the key parameter in this study; 

correlation was excellent (σ = 18.4%) and only 4.2% 

different from the experimental correlation. The 

input variables used in Model_A could be used to 

calculate the dissipated energy Ed (Eq.1), whereas 

the neural network could not achieve this internally 

to give a good estimate of wear volume, probably 

due to the small amount of data available for 

network training. Model_B was more reliable than 

Model_A. In Model_C, all the parameters are 

considered as inputs; the linear regression R² was 

better than in the other models, but the dispersion 

was greater (σ = 23.1%); wear prediction for low 

accumulated dissipated energy was poorer than in 

Model_A, but for higher energy the results were 

similar to those of Model_B.  

5 CONCLUSION 

A static Artificial Neural Network was built and 

validated for variable fretting and reciprocating 

conditions. In-situ wear volume measurement 

enabled a model describing wear behavior to be 

created, providing reliable simulation of wear. The 

ANN model assessed wear volume almost as well as 

the physical model (Figure 5b) in spite of the small 

amount of experimental data. At this point in the 

study, it is difficult to choose between Model_B and 

Model_C: one had a better correlation factor, 

whereas the other had less dispersion. Model_B 

provided better wear prediction for low accumulated 

dissipated energy. However, this issue needs more 

investigation. Another crucial issue is the size of the 

database used for the training and the test; this is a 

recurrent problem in many industrial applications, 

where the amount of data is insufficient for effective 

parameterization of standard neural structures. In 

such situations, one possible approach is to consider 

the hidden layer as “simply” a projection operator, 

given which learning could be performed on the 

output layer alone. These aspects (projection 

operator and output learning) need to be investigated 

more precisely to optimize estimation of wear 

volume. 
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