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Abstract: This paper presents a simple but effective synthesis strategy for observers based
faults detection in linear time-invariant (LTI) systems which are simultaneously affected by two
classes of unknown inputs: Noises having fixed spectral densities and unknown finite energy
disturbances. The problem of designing such an observer, also called a residual generator,
is formulated as a mixed H2/H∞ optimization problem. This is done to obtain an optimal
residual generator, i.e. with minimal sensitivity to unknown inputs. Unfortunately, there is
no known solution to this difficult optimization problem. Finding such a residual generator
is known to be computationally intractable via the conventional techniques. This is mainly
due to the non-convexity of the resulting optimization problem. To solve this kind of problem
easily and directly, without using any complicated mathematical manipulations, we utilize the
Heuristic Kalman Algorithm (HKA) for the resolution of the underlying constrained non-convex
optimization problem. A numerical example is given to illustrate the advantage of the mixed
H2/H∞ optimization approach against techniques based on optimization of H2 or H∞ criteria.

Keywords: Optimal residual generator; mixed H2/H∞ optimization problem; robust fault
detection.

1. INTRODUCTION

It is a matter of fact that the high degree of automation in
industrial process has enhanced the quality and efficiency
of normal operation, but, in the same time, has also made
systems more vulnerable to faults. As a consequence, de-
pendability has become a central issue in all disciplines of
systems engineering and software architecture. To assure
a good level of dependability, the need for fault detection
techniques have long been recognized; see Chen and Patton
[1999] and Patton et al. [2000] for a good overview of works
in this area. The fundamental purpose of a fault detection
scheme is to ”generate an alarm” when something is going
wrong in the system. This can be done by using the
concept of analytical redundancy. The principle rests on
the comparison of the actual behaviour of the considered
system to that expected via a mathematical model of this
system. As a consequence, any inconsistency between the
actual and expected behaviour can be interpreted as a
fault. However, any real system is subject to unknown
perturbations which also lead to inconsistency; therefore,
any fault detection scheme needs to be sufficiently insensi-
tive to these. Mathematically, the discrepancy between the
actual and expected behaviour is expressed as residuals.
Ideally, residuals are quantities that are nominally zero
but they become non-zero if faults are present. In this
paper, residuals will be generated with the help of a linear

observer. Such an observer is then usually called a residuals
generator. The basic principle of the linear observer-based
residual generation consists in the estimation of the mea-
sured outputs of the system to be monitored. The resulting
estimation error is then processed to decide whether or
not a fault has occurred in the system. However, any real
system is subject to perturbations which lead to nonzero
residuals while there is no fault; therefore, it is highly desir-
able to minimize their effect on the residual generation. To
this end, many approaches, such as H∞ optimization, LMI,
parity space and eigen-structure assignment techniques,
have been applied to robust residual generator design with
limited success (see for instance Liu at al. [2001], Sadrnia
et al. [1996], Patton et al. [1991], Zhong et al. [2003]). The
reason is that an efficient residual generator must satisfy
contradictory objectives i.e. minimal sensitivity to the dis-
turbances and maximal sensitivity to faults. Consequently,
the design task must take into account these two con-
flicting requirements. Following this line, many approaches
based H2 and/or, H∞ criteria have been proposed in the
literature (see for instance Liu and Zhou [2007], Henry
and Zolghadri [2005], Liu et al. [2005], Rank and Nie-
mann [1999], Wang et al. [2005]). However, most of them
do not make distinction between the various sources of
perturbations i.e.: noise, load disturbance and modelling
errors. A notable exception is the work by Khosrowjerdi
et al. [2005].



This paper deals with the fault detection of technical
devices, in the presence of perturbations caused by noises,
load disturbances and modelling errors. In what follows,
these various perturbations are called unknown inputs.
Roughly, these unknown inputs can be divided into two
main classes (see Khosrowjerdi et al. [2005]): those having
a fixed spectral densities (generally the noises) and those
having a finite energy (usually the load disturbances and
the modelling errors). As explained above, the minimiza-
tion of the effects of these unknown inputs on the residual
generation is of crucial importance to make a reliable
fault detection. To this end, the problem of designing
an observer-based residual generation, is formulated as
a mixed H2/H∞ optimization problem. This is done to
obtain an optimal residual generator, i.e. with minimal
sensitivity to unknown inputs. Unfortunately, there is
no known solution to this difficult optimization problem.
Finding such a residual generator is known to be com-
putationally intractable via the conventional techniques.
This is mainly due to the non-convexity of the resulting
optimization problem. In Khosrowjerdi et al. [2005] a sub-
optimal solution to this problem has been proposed. This
was done by minimizing an upper bound of the original
cost function.

In this paper, to solve the mixed H2/H∞ problem easily
and directly, without using any complicated mathematical
manipulations, we utilize the Heuristic Kalman Algorithm
(HKA) for the resolution of the underlying constrained
non-convex optimization problem. A numerical example
is given to illustrate the advantage of the mixed H2/H∞
optimization approach against existing techniques which
are based on optimization of H2 or H∞ criteria.

2. OPTIMAL RESIDUAL GENERATOR DESIGN
BASED ON THE HEURISTIC KALMAN

ALGORITHM (HKA)

In this section, a practical design procedure to determine
the parameters of the residual generator is presented. To
this end, we first formulate the problem of designing a
robust residual generator as an optimization problem.

2.1 Formulation of the optimization problem

We assume that the system to be monitored can be
described by the following state space model{

ẋ(t) = Ax(t) + Buu(t) + Bvv(t) + Bww(t) + Bff(t)
y(t) = Cx(t) + Duu(t) + Dvv(t) + Dww(t) + Dff(t)
x(0) = x0

(1)
where x ∈ Rnx is the state vector, u ∈ Rnu and
y ∈ Rny are, respectively, the known input and output
vectors. The unknown input w ∈ Rnw represents the
process/measurement noises, it is assumed to be of fixed
spectral density. The unknown input v ∈ Rnv is assumed
to be a finite energy disturbance modelling errors caused
by exogenous signals, linearization or parameter uncertain-
ties. The unknown input f ∈ Rnf is the fault vector; when
f = 0, system (1) describes the fault-free system (i.e. the
normal operating mode). The various constant matrices
of (1) are assumed to be known and are of appropriate
dimensions. It must be noticed that (1) is an augmented

plant model which includes all the weighting functions
reflecting the knowledge of w and v.

The objective is to develop a residual generator which gen-
erates, from the known input/output (i.e. u(t) and y(t)), a
set of residual signals r(t) that are robust to unknown in-
puts (i.e. v(t) and w(t)) and sensitive to the faults f(t). In
these conditions, we can conclude that a fault has occurred
if some norm of r(t) is larger than a prespecified threshold
or if there are some changes in the statistical properties of
the residual signals. This objective can be reached by using
an observer-based residual generation. Consider then the
following Luenbeger observer-based residual generation:{

ż(t) = Az(t) + Buu(t) + L(y(t) − Duu(t) − Cz(t))
r(t) = y(t) − Duu(t) − Cz(t)
z(0) = z0

(2)
where z ∈ Rnx is the state vector of the observer and
L ∈ Rnx×ny is the matrix gains to be designed to ensure
the stability of the observer as well as the robustness of
the residuals to unknown inputs. Combining (1) and (2),
we obtain:⎧⎨

⎩
ė(t) = Ãe(t) + B̃vv(t) + B̃ww(t) + B̃ff(t)
r(t) = Ce(t) + Dvv(t) + Dww(t) + Dff(t)
e(0) = e0

(3)

where e = x−z, Ã = A−LC, B̃v = Bv−LDv, B̃w = Bw−
LDw and B̃f = Bf − LDf . Note that the stability of
the residual generator is guaranteed by ensuring that the
matrix Ã is Hurwitz. Taking the Laplace transform of (1),
we obtain:
r(s) = Ge(s)e0 +Gv(s)v(s)+Gw(s)w(s)+Gf (s)f(s) (4)

where the transfert matrices Ge(s), Gv(s), Gw(s) and
Gf (s) are defined as: Ge(s) = C(sI − Ã)−1, Gv(s) =
Ge(s)B̃v + Dv, Gw(s) = Ge(s)B̃w + Dw and Gf (s) =
Ge(s)B̃f + Df .

We want the residual r insensitive to unknown inputs and
initial conditions, and sensitive to faults. The stability of
the observer will ensure the decay to zero of the effect of
nonzero initial conditions e0. Robustness as well as insen-
sitivity to load disturbance can be achieved by satisfying
‖Gv(s, L)‖∞ � γ, with γ as small as possible. However,
this kind of requirement can also lead to reduction of
sensitivity to faults and to an increase of sensitivity to
noise. Thus, in addition to ‖Gv(s, L)‖∞ � γ, we have to
minimize the influence of noise and to maximize the effect
of faults. This can be done by solving the following mixed
H2/H∞ optimization problem:

Minimize J1(L) =
‖Gw(s, L) − Dw‖2

‖Gf (s, L)‖∞
Subject to: g1(L) = ‖Gv(s, L)‖∞ − γ � 0

g2(L) = arg max
λi(L)

{Re(λi(L)), ∀i} − λmin � 0

L = [lij ] =

⎡
⎢⎢⎣

l11 · · · l1ny

l21 · · · l2ny

...
...

...
lnx1 · · · lnxny

⎤
⎥⎥⎦ , l � li,j � l̄

(5)
where L = [lij ] is the matrix of decision variables, l and
l̄ are the bounds of the hyperbox search domain. In the
constraint g2(L), the quantity λi(L) denotes the ith pole of



the observer. The parameter γ, is used to trade off between
detection performance and noise sensitivity.

The constrained optimization problem (5), can be trans-
formed into an unconstrained one, by introducing a new
objective function which includes penalty functions:

J(q) = J1(q) + β(max(g1(q), 0) + max(g2(q), 0)) (6)
where q = vect(L) is the vector of decision variables
defined as follows:

q = [l11, · · · , l1ny , l21, · · · , l2ny , · · · , lnx1, · · · , lnxny ] (7)
The setting of the weighting factor β is not very critical,
it is only required to penalize more or less strongly the
violations constraints. In all our experiment β has been
set to 100. In these conditions we have to find the optimal
vector of decision variables qopt, defined as:{

qopt = arg min
q∈D

J(q)

D = {q ∈ Rnq : l � qi � l̄, i = 1, · · · , nq}
(8)

where nq = nx + ny. Unfortunately, the problem thus
posed is known to be non-convex and thus computationally
intractable. Therefore, due to the practical importance
of the fault detection problem, it seems very useful to
develop new design strategies for designing optimal robust
residual generators. To this end, we present now a brief
overview of HKA, which is capable of dealing with non-
convex optimization problems. A more detailed study can
be found in Toscano and Lyonnet [2008].

2.2 Resolution of the optimization problem via the HKA

The principle of HKA is depicted figure 1. The HKA
includes a Gaussian random generator which produces,
at each iteration, a collection of N vectors that are
distributed about a given mean vector mk with a given
variance-covariance matrix Σk. This collection can be
written as follows:

q(k) =
{
q1
k, q2

k, · · · , qN
k

}
(9)

where qi
k is the ith vector generated at the iteration number

k: qi
k = [qi

1,k · · · qi
n,k]T , and qi

l,k is the lth component of qi
k

(l = 1, · · · , n).
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Fig. 1. Principle of the algorithm

This random generator is applied to the cost function J .
Without loss of generality, we assume that the vectors are
ordered by their increasing cost function i.e.:

J(q1
k) < J(q2

k) < · · · < J(qN
k ) (10)

The principle of the algorithm is to modify the parameters
of the gaussian generator so that its mean vector mk,
coincide with the optimum qopt. More precisely, let Nξ

be the number of considered best samples, that is such

that J(qNξ

k ) < J(qi
k) for all i > Nξ. The problem is how to

modify the parameters of the gaussian generator to achieve
a reliable estimate of the optimum?

To solve this problem, a measurement process followed
by a Kalman estimator is introduced. The measurement
process consists in computing the average of the candidates
that are the most representative of the optimum. For the
iteration k, the measurement, denoted ξk, is then defined
as follows:

ξk =
1

Nξ

Nξ∑
i=1

qi
k (11)

where Nξ is the number of considered candidates. The
Kalman estimator is used to update the parameters of the
Gaussian generator in accordance with the informations
drawn from the samples, i.e. the value of ξk and the
variance vector associated to the best samples:

Vk =
1

Nξ

⎡
⎣ Nξ∑

i=1

(qi
1,k − ξ1,k)2, · · · ,

Nξ∑
i=1

(qi
n,k − ξn,k)2

⎤
⎦

T

(12)

Based on the Kalman equations, the updating rules of
the Gaussian generator are as follows (see Toscano and
Lyonnet [2008], for a detailed derivation):

mk+1 = mk + Lk(ξk − mk)
Σk+1 = (I − akLk)Σk

(13)

with :⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lk = Σk(Σk + diag(Vk))−1, and

ak =
α min

(
1,

(
1

nq

∑nq

i=1
√

vi,k

)2
)

min
(

1,
(

1
nq

∑nq

i=1
√

vi,k

)2
)

+ max
1�i�nq

(vi,k)

(14)
where vi,k represents the ith component of the variance
vector Vk defined in (12), and the scalar α ∈ (0, 1] is given
by the designer. The flowchart of the HKA is given figure
2.

2.3 Initialization

The initial parameters of the Gaussian generator are
selected to cover the entire search space. To this end, the
following rule can be used:

m0 =

⎡
⎢⎣

µ1

...
µnq

⎤
⎥⎦ , Σ0 =

⎡
⎢⎣

σ1 · · · 0
...

. . .
...

0 · · · σnq

⎤
⎥⎦ (15)

with: ⎧⎪⎨
⎪⎩

µi =
l̄ + l

2
σi =

l̄ − l

6

(16)

where l̄ (respectively l) is the upper bound (respectively
lower bound) of the hyperbox search domain. With this
rule, 99% of the samples are generated in the intervals
µi ± 3σi, i = 1, . . . , nq.
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Fig. 2. Flow chart of the HKA.

3. NUMERICAL EXPERIMENTS

In this section, to illustrate the usefulness of the proposed
optimization approach, we consider the problem of fault
detection in a four-tank process. The state-space process
model is given by

ẋ(t) =

⎡
⎢⎣
−0.0159 0 0.0419 0

0 −0.0111 0 0.0333
0 0 −0.0419 0
0 0 0 −0.0333

⎤
⎥⎦x(t)

+

⎡
⎢⎣

0.0833 0
0 0.0718
0 0.0479

0.0312 0

⎤
⎥⎦ (u(t) + f(t))

+

⎡
⎢⎣

0 0
0 0

−0.0357 0
0 −0.0313

⎤
⎥⎦ v(t)

y(t) =
[

0.5 0 0 0
0 0.5 0 0

]
x(t) + w(t)

(17)
where the state vector x = [x1 x2 x3 x4]T represents the
level of water in the tanks, the control input u = [u1 u2]T
is the voltage applied to the pumps, f = [f1 f2]T is the
fault vector associated to the pumps, v = [v1 v2]T is the
disturbance vector and w = [w1 w2]T is the measurement
noise vector. The objective is to detect the actuator fault
f in the presence of a disturbance v and the measurement

noise w. To evaluate the performance of the residual
generator, a fault f1 (see Fig. 3) and a disturbance v1

(see Fig. 4) are applied.
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Fig. 3. Pump fault f1.
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Fig. 4. Disturbance v1.

The synthesis of the mixed H2/H∞ residual generator
was done by solving the optimisation problem (5) via
HKA. The following parameters have been used: N = 50,
Nξ = 5, α = 0.4, l = −1, l̄ = 1, λmin = −0.01 and
γ = 0.08. Fig. 5 shows the simulation result obtained with
the resulting residual generator. This figure describes the
evolution of the absolute value of the residual r1(t). We can
see that the effect of the disturbance v1(t) on the residual
r1(t) is strongly attenuated and the effect of the fault is
significantly bigger than that of v1(t). Therefore, this fault
can be easily detected by using an appropriate threshold.
The ratio between the maximum value of the effect of the
fault to the maximum value of the effect of the disturbance
is 2.6. This ratio is only of 1.8 by using the approach
proposed by Khosrowjerdi et al. [2005]. This clearly shows
the better performance of the proposed approach. Indeed,



HKA allows to solve directly the optimisation problem
(5) without using any upper bound nor transforming the
non-convex problem into a convex one, as it is the case in
Khosrowjerdi et al. [2005].
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Fig. 5. Evolution of |r1(t)|, mixed H2/H∞, γ = 0.08.

For comparison, Fig. 6 shows the result obtained when
the residual generator is designed by just solving the H2

optimisation problem{
Lopt = argmin

L
‖[Gv(s, L) Gw(s, L)]‖2

g(L) = arg max
λi(L)

{Re(λi(L)), ∀i} − λmin � 0 (18)

Similarlely, Fig. 7 shows the result obtained by just solving
the H∞ optimisation problem{

Lopt = argmin
L

‖[Gv(s, L) Gw(s, L)]‖∞
g(L) = arg max

λi(L)
{Re(λi(L)), ∀i} − λmin � 0 (19)

As we can see, the corresponding residual generators
cannot be used to detect the fault f1(t). This confirm the
usefulness of a mixed H2/H∞ synthesis.

4. CONCLUSION

In this paper, a straightforward design method for robust
residual generator satisfying mixed H2/H∞ performance
criteria was developed. This sort of estimation problem
usually results in a non-convex constrained optimization
problem which is known to be very difficult to deal with.
This is why, to solve in a direct way this kind of problem,
we have proposed to use the Heuristic Kalman Algorithm.
Indeed, HKA runs without any conservative assumption
usually required in the conventional methods, in addition
it allows to determine residual generator gains by solv-
ing the constrained optimization problem in a direct way
without requiring any complicated mathematical manipu-
lations. Simulation studies have demonstrated the validity
of the proposed approach, in particular a comparisons
with the work presented in Khosrowjerdi et al. [2005],
has shown that a direct resolution of the mixed H2/H∞
optimization problem via HKA leads to better results,
notably concerning the detectability of a fault.
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Fig. 6. Evolution of |r1(t)|, H2 synthesis.
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Fig. 7. Evolution of |r1(t)|, H∞ synthesis.
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