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A Kalman optimization approach for solving some
industrial electronics problems

Rosario Toscano, and Patrick Lyonnet

Abstract—This paper is concerned with solving non-convex
optimization problems arising in various engineering sciences.
In particular, we focus on the design of a robust flux estimator
of induction machines and the optimal design of on-chip spiral
inductors. To solve these problems, a recently developed opti-
mization method, called the heuristic Kalman algorithm (HKA),
is employed. The principle of HKA is to explicitly consider the
optimization problem as a measurement process designed to give
an estimate of the optimum. A specific procedure, based on the
Kalman estimator, was developed to improve the quality of the
estimate obtained through the measurement process. The main
advantage of HKA, compared to other stochastic optimization
methods, lies in the small number of parameters that need to
be set by the user. Based on HKA a simple but effective design
strategy for robust flux estimator and on-chip spiral inductors is
developed. Numerical studies are conducted to demonstrate the
validity of the proposed design procedure.

I. INTRODUCTION

THE problem of estimating the true value of a given
variable which is subject to some stochastic disturbances

is a major concern in many disciplines such as electrical
engineering, mechanical engineering, chemical engineering,
robotics, economics, to cite only a few. It is well known
that such problems can be solved optimally, in the sense of a
minimum variance, using the Kalman filter.

A less known aspect of the Kalman filter is that it can be
used to solve non-convex optimization problems. This is a
very interesting fact because a lot of engineering problems
are formulated as non-convex optimization problems and thus
our ability in solving them is of crucial importance. However,
the non-convex problems are known to be difficult to solve,
it is indeed now well recognized that the great watershed
in optimization is not between linearity and nonlinearity, but
convexity and non-convexity.

Very efficient algorithms for solving convex problems exist
[3], whereas the problem of non-convex optimization remains
largely open despite an enormous amount of effort devoted to
its resolution.

One of the main objectives of this paper is to introduce
a new optimization method, called the heuristic Kalman al-
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gorithm (HKA) able to deal with non-convex problems. This
approach falls in the category of the so-called “population-
based stochastic optimization techniques”. However, its search
heuristic is entirely different from other known stochastic
algorithms [16], [5], [11]. Indeed, HKA explicitly considers
the optimization problem as a measurement process designed
to give an estimate of the optimum. A specific procedure,
based on the Kalman estimator, was developed to improve
the quality of the estimate obtained through the measurement
process. The main advantage of HKA compared to other
metaheuristics, lies in the small number of parameters that
need to be set by the user (only three). This property makes
the algorithm easy to use for non-specialists.

On the other hand, this paper is concerned with the design of
a robust flux estimator of induction machines and the optimal
design of on-chip spiral inductors. These two domains of
application have been chosen due to their practical importance
in industrial electronics.

The Induction motor is widely used in industry mainly
because of its simple and robust structure which results in
a very reliable operation. However, the control of this kind of
actuator is very difficult due to its highly nonlinear dynamic.
Field-oriented control has proved to be an efficient approach
to the control of induction machine and continues to be an
active research area [6], [10]. However, most of the practical
implementations of this technique require the knowledge of the
rotor flux which is not available in industrial machines. Conse-
quently, rotor flux estimation from the stator variables (voltage
and current) and rotor speed is an important issue, [21], [9],
[15], [7], [19]. Despite many contributions, the problem of
designing a flux estimator remains a challenging task. This
is mainly due to the fact that parameter uncertainties, such
as the variation of the rotor resistance, affects significantly
the dynamic of the motor and thus increases the estimation
error. It is then necessary to take into account the parameter
uncertainties to make the flux estimator less sensitive to
uncertainties. To this end, a robust observer for flux estimation
is proposed. The matrix gain of the observer is designed to
ensure a minimal sensitivity to parameter uncertainties and
noise measurement while ensuring the robust stability of the
estimator. It is shown that this results in a mixed H2/H∞
optimization problem including a structural constraint on the
matrix gain.

Thus formulated, this problem is extremely difficult to solve
in the framework of LMI (Linear Matrix Inequalities [2])
because of the structural constraint on the matrix gain. In
addition, a major drawback with LMI approaches is the use of
Lyapunov variables, whose number grows quadratically with
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the system size, whereas we are looking for the structured ma-
trix gain observer which contains a comparatively very small
number of unknowns. It is then necessary to introduce new
techniques capable of dealing with this kind of optimization
problems without introducing extra unknown variables and
without using too many user defined parameters. As we will
see, this is precisely what the HKA method can do.

The second domain of application considered in this paper
is the design of on-chip spiral inductors [20], [1], [8]. This
kind of component is an essential part of any radio frequency
integrated circuit such as voltage controlled oscillators, low-
noise amplifiers etc. Consequently, the optimal design of this
kind of component is of great practical importance. Typically,
we have to determine the layout parameters to obtain the
desired value of the inductance. But this is not sufficient,
because at high frequencies (i.e. in the Ghz range), some
complicated losses mechanisms must be taken into account
to make a realistic design. Theoretically, an exact design can
be done by solving Maxwells equations and practically a good
numerical solution may be obtained by using available field
solvers like for instance ASITIC [14]. However, field solvers
are computationally intensive and require long run times, and
so are more appropriate for design verification than the design
stage of an inductor. The approach adopted in this work is
to use a simplified model of the on-chip spiral inductor that
can predict its behaviour in a broad range of frequencies.
Based on this model, we can design, quickly, high performance
spiral inductors (i.e. with minimum losses) through the use of
optimization techniques. However the resulting optimization
problem is non-convex and thus extremely difficult to solve
via conventional techniques. Using the field solver ASITIC as
a verification tool, it is shown that the Kalman optimization
method is a good alternative for solving this kind of problem.

The remaining part of this paper is organized as follows. In
section 2, the heuristic Kalman algorithm (HKA), is presented.
In particular, we describe the main components of the HKA:
Gaussian generator, measurement process and Kalman estima-
tor. The updating rules of the HKA are then introduced and the
problem of initialization and parameters setting is discussed.
Section 3 presents the robust flux estimator design based on
the heuristic Kalman algorithm (HKA). Section 4 is devoted to
the optimal design on-chip spiral inductors via HKA. Finally,
section 5 concludes this paper.

II. THE HEURISTIC KALMAN ALGORITHM (HKA)

Optimization is the way of obtaining the best possible
outcome given the degrees of freedom and the constraints.
More formally, an optimization problem has the following
form:

minimize f0(x)
subject to fi(x) 6 0, i = 1, · · · , Nc

x ∈ D = {x ∈ Rnx : x ¹ x ¹ x̄}
(1)

where f0 : Rnx → R is the objective function (or cost
function) i.e. the function that we want to minimize1, fi :

1Note that any maximization problem can be converted into a minimization
problem. Indeed maximizing f(x) is the same as minimizing −f(x).

Rnx → R, i = 1, · · · , Nc are the constraint functions, and
the vector x = (x1, · · · , xnx

) is the optimization variable
also called decision variable or design variable. The set D
is such we call the search domain2 i.e. the set under which
the minimization is performed. The vectors x = (x1, · · · , xnx

)
and x̄ = (x̄1, · · · , x̄nx) are the bounds of the search domain
and the symbol ¹ means a componentwise inequality. A vector
xf ∈ D is said feasible if it satisfies the Nc constraints fi;
the set of feasible vector is called the feasible domain. We
denote by xopt a solution of the problem (1), i.e. a vector
which ensures the smallest objective value among all vectors
that satisfy the constraints.

The functional constraints fi can be handled by introducing
a new objective function including penalty functions:

J(x) = f0(x) +
Nc∑

i=1

wi max(fi(x), 0) (2)

Where Nc is the number of constraints and the wi’s are
weighting factors. There exists a vast literature dealing with
the problem of the updating rule of the weighting factor (see
for instance [4]). However, in most practical applications,
the choice of constant weighting factors leads to a satisfying
solution (possibly sub-optimal). In this case, the setting of
the wi’s must be done to penalize more or less strongly the
violation constraints. Note that if x satisfies the constraints
then J(x) = f0(x). In these conditions solving problem (1) is
the same as solving the following optimization problem:

minimize J(x)
subject to x ∈ D = {x ∈ Rnx : x ¹ x ¹ x̄} (3)

Thus posed, the objective is then to find the optimum xopt

i.e. the nx-dimensional decision vector which minimizes the
cost function J . Unfortunately, there are several obstacles
for solving this kind of problem. The main obstacle is that
most of the optimization problems are NP-hard. Therefore the
known theoretical methods cannot be applied except possibly
for some small size problems. Other difficulties are that the
cost function may be not differentiable and/or multimodal.
Therefore the set of methods requiring the derivatives of the
cost function cannot be used. Another obstacle is when the cost
function cannot be expressed in an analytic form, in this case,
the cost function can be only evaluated through simulations.

In these situations, heuristic approaches seem to be the only
way for solving optimization problems. By heuristic approach,
we mean a computational method employing experimenta-
tions, evaluations and trial-and-errors procedures to obtain an
approximate solution for computationally difficult problems.
The HKA described in the next section, was built with this in
mind.

A. Principle of the algorithm

The principle of the algorithm is depicted in figure 1. The
proposed procedure is iterative, and we denote by k, the kth

iteration of the algorithm. The HKA includes a Gaussian ran-
dom generator which produces, at each iteration, a collection

2The set D is a hyperbox and thus is also called the hyperbox search
domain.
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of N vectors that are normally distributed according to the
mean value mk and the standard deviation vector Sk of the
Gaussian generator. This collection can be written as follows:

x(k) =
{
x1

k, x2
k, · · · , xN

k

}
(4)

where xi
k is the ith vector generated at the iteration number

k: xi
k = [xi

1,k · · ·xi
n,k]T , and xi

l,k is the lth component of xi
k

(l = 1, · · · , n).

Gaussian Generator
(mk, Sk)

Cost function
J(.)

Kalman
Estimator

Measurement
Process

N

(mk, Sk) ξk
Nξ

x(k) =
{
xi

k

}i=N

i=1

{
J(xi

k)
}i=N

i=1

Fig. 1. Principle of the algorithm

This random generator is applied to the cost function J .
Without loss of generality, we assume that the vectors are
ordered by their increasing cost function i.e.:

J(x1
k) < J(x2

k) < · · · < J(xN
k ) (5)

The principle of the algorithm is to modify the mean vector
and the standard deviation vector of the random generator in
order to decrease the cost function value. This procedure is
then repeated until no more improvement can be found. More
precisely, let Nξ be the number of considered best samples,
that is such that J(xNξ

k ) < J(xi
k) for all i > Nξ. Note that the

best samples are those of sequence (4) which have the smallest
cost function. The objective is then to generate, from the best
samples, a new random distribution in order to improve the
current solution.

To this end, a measurement procedure followed by an
optimal estimator of the parameters of the random generator
is introduced. The measurement process consists in computing
the average of the best candidate solutions. For the kth

iteration, the measurement, denoted ξk, is defined as follows:

ξk =
1

Nξ

Nξ∑

i=1

xi
k (6)

where Nξ is the number of considered candidates. It can
be considered that this measure gives a perturbed knowledge
about the optimum, i.e.

ξk = xopt + vk (7)

where vk is an unknown zero-mean perturbation acting on the
measurement process.

Note that vk is the random error vector between the measure
ξk and the unknown optimum xopt. In other words, vk is
a kind of measure of our ignorance about xopt. Of course,
this uncertainty cannot be measured but only estimated by
taking into account all available knowledge. In our case, the
uncertainty of the measure is closely related to the dispersion
of the best samples xi

k, i = 1, · · · , Nξ. Our ignorance about

the optimum can thus be taken into account by using the
variance vector associated to these best samples:

Vk =
1

Nξ




Nξ∑

i=1

(xi
1,k − ξ1,k)2, · · · ,

Nξ∑

i=1

(xi
n,k − ξn,k)2




T

(8)

In these conditions, the Kalman filter can then be used to
make an estimate, so-called “a posteriori”, of the optimum,
i.e. taking into account the measure as well as the confidence
we place in it. As seen, this confidence can be quantified by
the variance vector (8).

Roughly speaking, a Kalman filter is an optimal recursive
data processing algorithm [12]. Optimality must be understood
as the best estimate that can be made based on the model
used for the measurement process as well as the data used to
compute this estimate.

B. Equations of the Kalman estimator

The objective is to design an optimal estimator which
combines a prior estimation of xopt and the measurement ξk,
so that the resulting posterior estimate is optimal in a sense
which will be defined below. In the Kalman framework, this
kind of estimator takes the following form:

x̂+
k = L′kx̂−k + Lkξk (9)

where x̂−k represents the prior estimation i.e. before the
measurement, x̂+

k is the posterior estimation i.e. after the
measurement, L′k and Lk are unknown matrices which have to
be determined to ensure an optimal estimation. Here optimality
is reached when the expectation of the posterior estimation
error is zero and its variance is minimal. This can be expressed
as follows:

(L′k, Lk) = arg min
L′k, Lk

E[x̃+T
k x̃+

k ], E[x̃+
k ] = 0 (10)

where E is the expectation operator and x̃+
k represents the

posterior estimation error at iteration k. We define the posterior
estimation error x̃+

k and its variance-covariance matrix P+
k as:

x̃+
k = xopt − x̂+

k , P+
k = E[x̃+

k x̃+T
k ] (11)

In the same way, we define the prior estimation error x̃−k and
its variance-covariance matrix P−k as:

x̃−k = xopt − x̂−k , P−k = E[x̃−k x̃−T
k ] (12)

Under the assumption that E[x̃−k ] = 0, it can be easily
established that the satisfaction of the condition E[x̃+

k ] = 0
requires

L′k = I − Lk (13)

where I is the identity matrix. Then, putting this expression
into equation (9) gives:

x̂+
k = x̂−k + Lk(ξk − x̂−k ) (14)

The objective is now to determine Lk in such a way that
the variance of the posterior estimation error is minimized.
Noting that: trace(P+

k ) = E[x̃+T
k x̃+

k ], the minimization of the
variance of x̃+

k is accomplished by minimizing the trace of
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P+
k with respect to Lk. A standard calculus, similar to the

one used for the derivation of the Kalman filter (see [12]),
yields:

Lk = P−k (P−k + diag(Vk))−1, P+
k = (I − Lk)P−k (15)

where diag(Vk) is a diagonal matrix having in its diagonal the
variance vector Vk.

C. Updating rule of the Gaussian generator

In the HKA, (x̂−k , vecd(P−k )) represents the mean value and
the variance vector3 of the Gaussian generator at iteration k i.e.
mk = x̂−k and Sk = (vecd(P−k ))1/2 (recall that Sk represents
the standard deviation vector of the Gaussian generator).
According to the Kalman equations (14), (15), the updating
rule of the Gaussian generator are given by mk+1 = x̂+

k

and Sk+1 = (vecd(P+
k ))1/2. However, the expression for

computing P+
k (see 15) generally leads to a decrease in the

variance of the Gaussian distribution that is too fast, which
results in a premature convergence of the algorithm. This
difficulty can be tackled by introducing a slowdown factor that
is adjusted according to the dispersion of the best candidates
considered for the improvement of the current solution. This
can be done as follows:

Sk+1 = Sk + ak(Wk − Sk) (16)

with:



ak =
α min

(
1, ( 1

nx

∑nx
i=1

√
vi,k)2

)

min
(
1, ( 1

nx

∑nx
i=1

√
vi,k)2

)
+max16i6nx (wi,k)

Sk =
(
vecd(P−k )

)1/2
, Wk =

(
vecd(P+

k )
)1/2

, (17)

where ak is the slowdown factor, α ∈ (0, 1] the slowdown co-
efficient, and vi,k represents the ith component of the variance
vector vecd(Vk) defined in (8), wi,k is the ith component of
the vector Wk, and vecd(.) is the diagonal vector of the matrix
given in argument.

All the matrices used in our formulation (i.e. P+
k , P−k , Lk)

are diagonal. Consequently, to save computation time, we must
use a vectorial form for computing the various quantities of
interest. According to (14), (15) (16) and (17), the updating
rule of the Gaussian generator can be rewritten in a vectorial
form as follows:
mk+1 = mk + Lk ~ (ξk −mk), Sk+1 = sk + ak(Wk − Sk)
Lk = S2

k//(S2
k + Vk), Wk = (S2

k − Lk ~ S2
k)1/2

(18)
where the symbol ~ stands for a componentwise product and
// represents a componentwise divide. The heuristic Kalman
algorithm can then be summarized as follows.

1) Initialization. Choose N , Nξ and α. Set mk := m0 and
Sk := S0.

2) Gaussian generator (mk, Sk). Generate a sequence of
N vectors x(k) =

{
x1

k, x2
k, · · · , xN

k

}
according to a

Gaussian distribution parametrized by mk and Sk.
3) Measurement process. Using relations (6) and (8), com-

pute ξk and Vk.

3The notation vecd(.) represents the diagonal vector of the matrix passed
in argument.

TABLE I
EFFECT OF THE HKA PARAMETERS (↗ : INCREASE, ↘ : DECREASE).

Parameter N ↗ Nξ ↗ α ↗
Number of function evaluations ↗ ↗ ↘
Typical values 20-150 N /10 0.4-0.9

4) Updating rule of the Gaussian generator. Using relation
(18), compute mk+1 and Sk+1.

5) Initialization of the next step. Set mk := mk+1 and
Sk := Sk+1.

6) Termination test. If the Stopping rule is not satisfied, go
to step 2, otherwise stop.

A detailed discussion on the convergence property of this
algorithm can be found in [17], [18].

D. Initialization and parameter settings
The initial parameters of the Gaussian generator are selected

to cover the entire search space. To this end, the following rule
can be used:

m0 = [µ1, · · · , µnx ]T , S0 = [σ1, · · · , σnx ]T (19)

with:

µi =
x̄i + xi

2
, σi =

x̄i − xi

6
, i = 1, . . . , nq, (20)

where x̄i (respectively, xi) is the ith upper bound (respectively,
lower bound) of the hyperbox search domain. With this rule,
99% of the samples are generated in the interval µi ± 3σi,
i = 1, . . . , nx. The three following parameters must be set:
the number of points N , the number of best candidates Nξ,
and the coefficient α. To facilitate this task, TAB. I summarizes
the influence of these parameters on the number of function
evaluations and thus on the CPU time. This table gives also
some typical values of the user defined parameters.

III. ROBUST OBSERVER FOR ROTOR FLUX ESTIMATION OF
AN INDUCTION MACHINE

The design of a robust flux estimator requires a model of the
induction machine that takes into account the perturbations due
to parametric uncertainties as well as the noise measurement.
This uncertain model can then be used to develop a robustly
stable flux observer with minimal sensitivity to disturbances.
In what follows, these various aspects will be considered with
some details.

A. Induction motor model including parametric disturbances
and noise measurement

Under the assumptions of linearity and symmetry of electric
and magnetic circuits and neglecting iron losses, the dynamic
model of a squirrel-cage induction motor in the fixed stator
reference frame can be written as follows:

ẋ(t) = Ã(ω)x(t) + Bu(t),

Ã(ω) =




ã1 0 ã2 a3ω(t)
0 ã1 −a3ω(t) ã2

ã4 0 ã5 −npω
0 ã4 npω ã5


 , B =




b 0
0 b
0 0
0 0




(21)
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where ω is the rotor speed, x = [iα, iβ , ϕα, ϕβ ]T is the state
vector, iα, iβ are the stator currents, ϕα, ϕβ are the rotor
fluxes and u = [uα, uβ ]T represents the stator voltage. The
parameters of the induction machine are: the uncertain but
bounded stator resistance R̃s ∈ [Rs, R̄s], the uncertain but
bounded rotor resistance R̃r ∈ [Rr, R̄r], the stator inductance
Ls, the rotor inductance Lr, the mutual inductance Lsr and the
number of pole pairs np. The bounds of variation of the stator
and rotor resistances (i.e. Rs, R̄s, Rr and R̄r) are assumed
to be known. The entries of the matrices Ã(ω) and B are
defined as: ã1 = ã11 + ã12, ã11 = a11R̃s, a11 = − 1

σLs
,

σ = 1 − L2
sr

LsLr
, ã12 = a12R̃r, a12 = − L2

sr

σLsL2
r

, ã2 = a2R̃r,
a2 = Lsr

σLsL2
r

, a3 = np
Lsr

σLsLr
, ã4 = a4R̃r, a4 = Lsr

Lr
,

ã5 = a5R̃r, a5 = − 1
Lr

, b = 1
σLs

.
It is interesting to note that the evolution matrix Ã(ω) can

be rewritten as Ã(ω) = R̃rAr + R̃sAs + ωAω, where Ar, As

and Aω are constant matrices defined as follows

Ar =




a12 0 a2 0
0 a12 0 a2

a4 0 a5 0
0 a4 0 a5


 , As =




a11 0 0 0
0 a11 0 0
0 0 0 0
0 0 0 0


 ,

Aω =




0 0 0 a3

0 0 −a3 0
0 0 0 −np

0 0 np 0




(22)
System (21) can then be expressed as:

ẋ(t) = A(ω)x(t) + Bu(t) + Bww(t),

A(ω) = RrAr + RsAs + ωAω, Bw = [R′rAr R′sAs] ,
Rr = R̄r+Rr

2 , R′r = R̄r−Rr

2 , Rs = R̄s+Rs

2 , R′s = R̄s−Rs

2
(23)

where w is the unknown vector of disturbances due to the
parametric uncertainties. The measured variables are the stator
currents and the rotor speed. The output equation is then given
by:

yi(t) = Cix(t) + Divi(t), yω(t) = ω(t) + vω(t)

Ci =
[

1 0 0 0
0 1 0 0

]
, Di =

[
1 0
0 1

] (24)

where yi is the vector of measured currents, yω is the measured
rotor speed, vi and vω are the noises measurement. Finally, the
complete model of the induction motor that takes into account
the perturbations due to parametric uncertainties and the noise
measurement is given by equations (22), (23) and (24).

B. Robustly stable flux observer

Any observer utilizes a real-time simulation of the system
model corrected by the estimation error. This principle leads
to the following flux observer:

˙̂x(t) = A(yω)x̂(t) + Bu(t) + K(yi(t)− ŷi(t)
ŷi(t) = Cix̂(t), A(yω) = RrAr + RsAs + yωAω

(25)

The problem is to determine the matrix gain to ensure the
robust stability of this time varying observer (the evolution
matrix depends upon the rotor speed measurement) while
ensuring a minimal sensitivity to parametric uncertainties and
noise measurement. The error dynamic is given by:

ė(t) = ẋ(t)− ˙̂x(t)
= (A(ω)−KCi)e(t) + Bww(t)−Dvv(t) (26)

where Dv = [KDi Aω], and v is the noise measurement.
Under the assumption that ω ∈ [ω, ω̄], with ω̄ > 0 and
ω = −ω̄, it can be shown that if the matrix gain satisfies
the following structural constraint:

K =
[

k1 k2 k3 k4

k2 k1 k4 k3

]T

(27)

and is such that A(ω)−KCi is Hurwitz, then the time varying
flux observer (25) is asymptotically stable i.e. when w(t) = 0,
v(t) = 0 and ω(t) ∈ [ω, ω̄], we have limt→∞ e(t) = 0. In
addition to this stability condition it is necessary to ensure that
the estimation error remains small for non-zero disturbances.
In what follows, it is shown that this requirement can be
formulated as an optimization problem.

C. Formulation of the optimization problem for a minimal
sensitivity to disturbances

Taking the Laplace transform of (26) for a given constant
value of ω, gives:

e(s) = Gw(ω,K)w(s) + Gv(ω, K)v(s) (28)

where the transfer matrices Gw(ω, K) and Gv(ω, K) are
defined as: Gw(ω, K) = (sI − (A(ω) − KCi))−1Bw,
Gv(ω,K) = −(sI−(A(ω)−KCi))−1Dv . Minimal sensitivity
to parametric uncertainties at any speed ω can be achieved by
minimizing the mean value of the H∞ norm of the transfer
matrix Gw(ω, K). However, this requirement can also lead to
an increase of sensitivity to noise. It is then also necessary
to limit the influence of noise. This can be done by imposing
that the mean value of the H2 norm of the transfer matrix
Gv(ω,K) is smaller or equal than a given value γ. Finally, a
robustly stable flux observer, with, for all speeds ω, a small
sensitivity to parametric uncertainties and noises measurement,
can be obtained by solving the following mixed H2/H∞
optimization problem:

minimize
1

ω̄ − ω

∫ ω̄

ω

‖Gw(ω, K)‖∞dω

subject to:
1

ω̄ − ω

∫ ω̄

ω

‖Gv(ω,K)‖2dω ≤ γ

arg max
i

Re{λi(A(ω)−KCi)} ≤ λmin

K =
[

k1 k2 k3 k4

k2 k1 k4 k3

]T

(29)

where K is the structured matrix of decision variables, λi(.)
denotes the ith eigenvalue of the matrix passed in argument.
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The parameter γ, is used to trade off between robustness to
parametric uncertainties and noise sensitivity.

To simplify the resolution of (29), the integrals (i.e. the
mean values) can be approximated by a finite sum by dis-
cretizing the rotor speed domain:

minimize
1

Nω

Nω∑

i=1

‖Gw(ωi, K)‖∞

subject to:
1

Nω

Nω∑

i=1

‖Gv(ωi,K)‖2 ≤ γ

arg max
i

Re{λi(A(ω)−KCi)} ≤ λmin

K =
[

k1 k2 k3 k4

k2 k1 k4 k3

]T

(30)

with ω1 = ω and ωN = ω̄.

D. Numerical experiment

In this numerical application, the following parameters of
the induction machine have been used: Ls = Lr = 0.5H,
Lsr = 0.45H, Rs ∈ [0.75, 1.25], Rr ∈ [0.5, 1.5] and
ω ∈ [−100, 100]. Rotor flux estimation can be done using
(21) as a real time simulation model with nominal parameters.
The sensitivity of this estimator to parametric uncertainties can
then be evaluated by calculating maxω ‖Gw(ω, 0)‖∞, which
gives: 1.31.

Now we can improve this result by solving problem (30).
This problem has been solved using the Kalman optimization
method with the following user defined parameters: N = 50,
Nξ = 5, α = 0.5, γ = 7, λmin = −1.25. The following
observer gain has been found:

K∗ =
[

62.060 −7.357 −2.261 0.291
−7.357 62.060 0.291 −2.261

]T

The sensitivity of the resulting flux observer to paramet-
ric uncertainties is then evaluated by maxω ‖Gw(ω, K∗)‖∞,
which gives: 0.75. This result shows the superiority of the
proposed flux observer over the real time simulation approach.

The performance of the proposed robust observer has been
also compared with the classical Kalman estimator computed
for ω = 50rad/s, Q = I4 and R = I2, where Q and R are,
respectively, the variance-covariance matrices of the process
and measurement white noise. The following Kalman estima-
tor has been found using the MatLab command kalman:

˙̂x(t) =




−26.1 0 18.95 947.4
0 −26.1 −947.4 18.95

1.266 0.1747 −2 −100
−0.1747 1.266 100 −2


 x̂(t)+




10.53 0 7.05 0
0 10.53 0 6.95
0 0 −0.37 −0.17
0 0 0.16 −0.37







uα(t)
uβ(t)
iα(t)
iβ(t)




ŷi(t) = Cix̂(t)

(31)

Figure 2 shows the flux modulus (i.e., φ =
√

ϕ2
α + ϕ2

β)
estimation obtained with the robust observer and the Kalman
estimator. These results have been obtained with uα =
100

√
2 sin(50t), uβ = 100

√
2 sin(50t − π/2), x̂K(0) =

[1 1 1 1]T and x̂R(0) = [2 2 2 2]T , where x̂K(0) and x̂R(0)
are, respectively the initial state vector of the Kalman estimator

and the initial state vector of the robust observer. As shown
figure 2, the the steady-state estimation error obtained with
the robust observer is lower than that obtained with a standard
Kalman estimator.
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Fig. 2. Flux modulus estimation.

IV. DESIGN OF SPIRAL INDUCTORS ON SILICON

In the sequel, we first introduce a well-accepted inductor
model able to take into account the losses via parasitic
resistances and capacitances. On the basis of this model, the
optimal design of an on chip inductor is realized by using the
Kalman optimization method.

A. Inductor model

Figure 3 shows the layout for square inductors, some other
shapes can be used such as hexagonal, octagonal, or circular.
For a given shape, an inductor is completely specified by the
number of turns n, the turn width w, the turn spacing s, the
inner diameter din and the outer diameter dout (see figure
3). These parameters are typically the design variables of the
inductor. Indeed, the inductance depends upon the geometry
of the inductor, and so, for a desired inductance we have to
determine the values of the layout parameters. But this is
not sufficient, because at high frequencies (i.e. in the Ghz
range), some complicated losses mechanisms must be taken
into account to make a realistic design.

Figure 4(a) illustrates the basic structure of a planar spiral
inductor on silicon. It consists of a metal trace manufactured
by low-resistivity metals such as aluminium, copper, gold
or silver. The metal spiral is mounted on silicon dioxide
layer which acts as insulation between the metal trace and
the silicon substrate. Figure 4(a) also highlights the parasitic
resistances and capacitances which are introduced to model
the losses. The corresponding electrical model of the spiral
inductor on silicon is presented in figure 4(b), see [20] and
[13] for a detailed derivation. This model takes into account
the parasitic resistances and capacitances responsible of the
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Fig. 3. Square inductor layout.

Fig. 4. Structure of an inductor on silicon and equivalent electrical model.

losses in the structure. The inductance Ls, and the resistances
and capacitances Rs, Cs, Rp, Cp are defined as follows:

Ls = k1n
2z(din, dout), Rs = k2n(din + dout)/w,

Cs = k3nw2, Rp = 2k7/(nw(din + dout)),
Cp = (k8 + k9)nw(din + dout)/2

(32)

The function z(din, dout) and the constants k1, k2, k3, k7, k8

and k9 are given by:

z(din, dout) = c1(ln(c2/r) + c3r + c4r
2),

r = (dout − din)/(dout + din), k1 = 2π10−7,
k2 = ηρ/(d(1− e−t/δ)), η = c5 tan(π/c5),
δ =

√
5× 106ρ/(πω), k3 = εox/tox,M1−M2 ,

k4 = ηεox/(2tox), k5 = ηCsub/2, k6 = 2/(ηGsub)
k7 = 1/(ω2k2

4k6) + k6(k4 + k5)2/k2
4,

k8 = k4/(1 + ω2(k4 + k5)2k2
6)

k9 = k4ω
2(k4 + k5)k5k

2
6/(1 + ω2(k4 + k5)2k2

6)
(33)

where the parameters c1, c2, c3, c4, c5 depend upon the shape
of the inductor (square, hexagonal, octagonal or circular);
the parameters ρ, t, εox, tox, tox,M1−M2 , Csub, Gsub are
technology dependent, and ω is the working frequency of the
inductor.

The performance of an inductor is measured by its quality
factor Q, which is limited by the parasitics. This quantity
is defined as the ratio of peak magnetic energy minus peak
electric energy to energy dissipated in the inductor see [20]:

Q =
ωLs

Rs

Rp

[
1− R2

s(Cs+Cp)
Ls

− ω2Ls(Cs + Cp)
]

Rp +
[(

ωLs

Rs

)2

+ 1
]

Rs

(34)

An inductor is at self-resonance when the peak magnetic and
electric energies are equal. Therefore, Q vanishes to zero at
the self-resonance frequency ωsr i.e.:

R2
s(Cs + Cp)

Ls
+ ω2

srLs(Cs + Cp) = 1 (35)

Above the self-resonance frequency, no net magnetic energy
is available and thus it is generally required that ωsr >
ωsr,min, where ωsr,min is the desired minimal self-resonance
frequency.

B. Formulation of the optimization problem

For a required value Lreq of the inductance, the optimization
consists in determining the values of the layout parameters
(i.e n, w, s, dout and din) which maximizes the quality factor
while ensuring the desired minimal self-resonance frequency
ωsr,min. In addition some geometry constraints must be added
such as: a minimum turn width wmin, a minimum spacing
smin, a minimum inner diameter din,min and a maximum
outer diameter dout,max which limit the inductor area. The
design variables din and dout are not independent and are
related to the other design variables by the expression din +
2(n− 1)s + 2nw = dout. Since s is typically small compared
to din, dout and w, we can recast this equality constraint as
the inequality constraint: din +2n(w+s) 6 dout. The optimal
design problem of the inductor can then be formulated as:

maximize Q
subject to Ls = Lreq

ωsr > ωsr,min

din + 2n(w + s) 6 dout

s > smin, w > wmin

din > din,min, dout 6 dout,max

(36)

C. Numerical experiments

Problem (36) has been solved using the Kalman optimiza-
tion method, the results thus obtained were then validated us-
ing the field solver ASITIC. In our experiments, the following
parameters have been used:

c1 = 1.27, c2 = 2.07, c3 = 0.18, c4 = 0.13, c5 = 4,
ρ = 2× 10−8Ωm, t = 10−6m, ω = 3π × 109rad/s,
εox = 3.45× 10−11F/m, tox = 4.5× 10−6m
tox,M1−M2 = 1.3× 10−6m, Csub = 1.6× 10−6F/m2,
Gsub = 4× 104S/m2, smin = wmin = 1.9× 10−6m,
din,min = 10−4m, dout,max = 4× 10−4m
ωsr,min = 5π × 109rad/s, Lreq = 26× 10−9H,
N = 50, Nξ = 5, α = 0.5.

The solutions found via HKA is given by: dout = 236 ×
10−6m, din = 113.8× 10−6m, w = 4.4× 10−6m, s = 1.9×
10−6m, n = 10. Using ASITIC as a verification tool (i.e. with
the layout parameters found via HKA, the field solver ASITIC
is used to determine the corresponding L, Q and ωsr), we
get the results shown in Table II. As we can see, the results
obtained using HKA are very close to those predicted using
ASITIC.
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TABLE II
VERIFICATION OF THE SOLUTION FOUND WITH ASITIC.

L (nH) Q ωsr (GHz)

HKA 26 3.53 ≥ 2.5

ASITIC 25.82 3.59 2.55

V. CONCLUSION

In this paper, a new optimization algorithm, called heuristic
Kalman Algorithm (HKA), was presented. The main charac-
teristic of the HKA is to explore, via a Gaussian pdf, the
search space. This exploration is directed by an appropriate
adjustment of the pdf parameters in order to converge to a
near-optimal solution with a small variance. To this end, a
measurement process followed by a Kalman estimator was
introduced. The role of the Kalman estimator is to combine
the prior pdf function with the measure to give a new pdf
function for the exploration of the search space.

HKA has been applied in two domains of industrial elec-
tronics, namely the design of a robust flux estimator of an
induction machine and the optimal design of on chip-spiral
inductors. These design problems have led to the formulation
of non-convex constrained optimization problems which are
known to be difficult to deal with. It has been shown that
HKA can be used to solve this kind of problem in a direct
way without requiring too many user defined parameters unlike
other stochastic methods.
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