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Abstract. In this paper we investigate the problem of robust synthesis of a static
output feedback controller, with guaranteed Hz/Hoo cost, in the context of multiple
parametric uncertainties. To solve this problem, it is proposed a random optimization
technique based on a bisection method. The principle is as follows, for a given initial
stabilizing controller of the nominal system, the proposed approach iteratively gene-
rates a sequence of matrices with a decreasing Hz/Ho cost. By a bisection method,
this procedure is stopped when the controller reaches the best possible nominal per-
formance that satisfies a given guaranteed H2/Hoo cost. Numerical examples show the
practical applicability of the proposed method.
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1 Introduction

The static output feedback is one of the most important issue in control
theory and applications. The reason for this is that it represents the simplest
closed-loop control that can be realized in practice. Another important reason
is that many problems that require a dynamical controller can be rephrased as
a static output feedback problem involving an augmented plant. Consequently,
many researchers have addressed the problem of static output feedback control
design. Give a complete state-of-the-art of this topic is not an easy task be-
cause there exist various unconnected approaches. However, among the existing
results, we can distinguish the following methods (see also the survey papers
[5, 26] for more details on this issue):

— Approaches based on solvability conditions expressed from structural pro-
perties of the open-loop system [33, 14, 11, 10, 3].

— Approaches based on the resolution of Riccati equations [13, 30, 17].

— Approaches based on optimization techniques [12, 4, 6, 23, 7, 15, 19, 21, 2].

Approaches based on pole or eigenstructure assignment techniques [8, 16,
32].
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However, despite these various efforts, this problem remains difficult to solve
due to its non convex nature. In view of this difficulty some recent progress have
been made in the use of heuristic methods for solving a given problem [29]. In
particular, random search techniques have recently received more attention in
the literature (see [28] and references therein). The idea of using a random search
approach to solve a complex problem was first proposed, in the domain of au-
tomatic control, by Matyas [20]; a complete state of the art of this topic can be
found in [24, 27]. Following this line of research, Sun, Chung and Chang [25]
have proposed a novel synthesis of 75/, robust static output feedback control
which combines a genetic algorithm (GA) and a LMI solver. Unfortunately, this
approach requires the resolution of a set of LMIs and therefore cannot be used
when the number of uncertain parameters is large. Indeed, in the context of
robust control design, the LMI approach generally requires to simultaneously
solve a number of convex inequalities, which is exponential in the number of pa-
rameters. Thus, the LMI approach is computationally critical for a large number
of uncertain parameters. For example, considering 8 uncertain parameters, we
need to solve 2 x 28 = 512 LMIs and this is not an easy task even for actual
LMIs solvers. In addition, suppose that this set of LMIs can be solved, the result
obtained can be conservative because the solution must satisfy a large number
of LMIs, and consequently, this leads, generally, to a pessimistic result.

These various difficulties motivate the investigation of a new approach for
solving the mixed Hs2/Hoo robust static output feedback control problem in
the context of multiple parametric uncertainties, without using LMIs. For this,
we propose a new iterative algorithm based on a bisection method, called ran-
dom bisection algorithm (RBA). The principle is as follows, for a given initial
stabilizing controller of the nominal system, the proposed approach iteratively
generates a sequence of matrices with a decreasing nominal Ha/Hoo cost. By a
bisection method, this procedure is stopped when the controller reaches the best
possible nominal performance that satisfies a given guaranteed Hs/H~, cost; i.e.
the worst case performance is bounded by a given pre-specified value. The pro-
posed control design method has the following interesting characteristics:

— Very general uncertainty structures and nonlinearities can easily be taken
into account without introducing overbounding.

— The proposed method does not require the resolution of linear matrix
inequalities (LMIs) or bilinear matrix inequalities (BMIs) [23, 31].

As aforementioned, this last point is very interesting from a practical point, of
view, notably in the context of multiple parametric uncertainties.

The paper is organized as follows. In section 2, the problem to be solved is
stated. Section 3 shows that a robust static output feedback controller, satis-
fying a given guaranteed Ha/H o cost, can be found via an appropriate random
optimization technique based on a bisection method. Section 4 illustrates the
validity of the proposed method via two numerical examples. Finally, section 5
concludes this paper.



2 Problem formulation

As in [25], we consider the following uncertain model:

mEt; = 3(0)(1')(15) + B, (Q)w(t) + B, (0)u(t)

t) = Cyx(t

M©) 4 0 = Cha(t) + Dasult) (1)
Zoo(t) = Coo(t) + Doorw(t) + Doy uu(t)

where z(t) € R" is the state vector, w(t) € R™ is the disturbance vec-
tor, u(t) € R™ is the control vector, y(t) € R™ is the output vector, and
22(t) € R™2 and 24 (t) € R"=> are the controlled output vectors of the > and
Hoo performance. All the matrices are assumed to have appropriate and known
dimensions. The matrices A(#), B,(#) and B, () are parametrized by the sys-
tem parameters § € R™ . In the sequel, it is assumed that M (6) is bounded and
continuous. The representation (1) can be obtained by an appropriate identifi-
cation of the real system around a given operating point. In the case where the
nonlinear process model is known, this local representation can also be obtained
by linearization via first order Taylor series expansion of the nonlinear model.
Therefore, the local model (1) is valid only around the operating point where
the system is identified or linearized, and is called the nominal linear model. For
this nominal model we have 6 = 6, where 6 is the nominal system parameters.
When the system evolves on a certain domain including the operating point,
the corresponding vector parameters 6 vary. These variations can be seen as
parameters uncertainties. In order to take into account these uncertainties, it is
necessary to consider the set of possible vectors @. It is assumed that the vector
parameters 6 lie in a bounded set © defined as follows :

O={ecR":0<.0<. 6} (2)

where the notation <, stands for an element-by-element inequality and the vec-
tors @ = [0, ---0,,,]" and § = [0, ---0,,]" are the bounds of variation of §. It
is assumed that all pairs, (A(6), B.(0)) and (A(),C,), are both controllable
and observable for all # € ©. With this formulation, the matrices A(6), B,(6)
and B, (#) are assumed to be affected by parametric, possibly nonlinear, uncer-
tainties. The entries of these matrices are then nonlinear functions of uncertain
parameters which are bounded within intervals. In this paper, we do not make
any specific assumption on the dependence of A(#), B,(#) and B,,(6) on 8, ex-
cept for boundedness of the entries of these matrices for all 8 € ©. Therefore, we
have a family of models M (0), parametrized by 6. The set M () can be written
as follows

M@)={M(@#): 6 ©®©CR™} (3)

where M () is given by (1), and © is defined by (2). We suppose that the full
state is not measurable and only a partial information through y(¢) can be used
for the control. Our main objective is to find a static output feedback (SOF)
controller that works satisfactorily for almost all plants.



For this purpose let us consider the static output feedback

u(t) = —Ky(t) (4)

where K is the constant output feedback gain. The consideration of the SOF case
is not restrictive because the dynamic output feedback case can be rephrased
as a SOF control problem involving an augmented plant. Applying the constant
output feedback (4) to (1), the closed-loop system is given by

&(t) = Ac(0)z(t) + Buw(0)w(t)
22(t) = ng(t) (5)
ZOO(t) (t) + Dooww( )

where the matrices A.(#), Cy, and Cy, are defined as follows

A.(8) = A8) - B.()KC,
Cy = Cy — Dy, KC, (6)
Cso = Coo — Do KC,

In this paper we consider the following robust synthesis problem.

Robust synthesis problem. Consider the set of systems (8), and the following
Ho/Heo cost function :

JO.K) = ao (0,K) + BJo(6,K)
(7)
Too(0,K) = ||Goo(5,0,K) |5, T2(0,K) = [|G2(s,8,K)|[5

where a > 0 and § > 0 are given weighting factors; G (s,0) and Ga(s,0) are
the closed-loop transfer matrices from w to zoo and za, respectively; ||.||co and
[|-]|2, denote the Hoo and Ha norms, respectively. Our aim is to look for, from
an initial stabilizing controller of the nominal system, a static output feedback
K that reaches the best possible nominal performance and such that the worst-
case performance, i.e. the guaranteed Ha/Hoo cost, is bounded by a pre-specified
value g..

The resolution of this problem requires the estimation of the guaranteed
Ha/Hoo cost, which can be formulated as follows.

Estimation of the guaranteed cost. For a given controller K, a given set of
systems M(6) = {M(0) : 0 € © C R™}, for which the closed-loop is stable, and
the Ho/Hoo cost function (7), determines the corresponding guaranteed Ho/H oo
cost, i.e. the quantity w.(K) such that J(0,K) < w.(K) for all 6 € ©.

3 Main results

3.1 Estimation of the guaranteed H,/H,, cost

Let K be an output feedback gain for which the closed-loop system is asymp-
totically stable for all vector parameters 6 € ©.



In this case, K is said an element of the set Kgg of robust stabilizing control-
lers which can be defined as follows

Krs = {K € R™*™ : A.(0) € H,V0 € ©} (8)

where A.(#) is the state matrix of the closed-loop system, and H is the set of
Hurwitz matrices:

H = {A € R"*" : max Re[\(H)] < 0} 9)

1<i<ng

From a practical point of view, stability is necessary but often not suffi-
cient. It is also very important to obtain a satisfactory performance level which
can be evaluated by the mean of a given cost function. In the Haz/Heo robust
control problem studied in this paper, the performance function is the Hs/H oo
cost given by (7). For a given controller K € Kgrg, we want to determine the
guaranteed cost, i.e. the worst-case performance w,.(K):

w(K) = max J(0,K) (10)

The problem of computing the exact value of the guaranteed cost is not an
easy task especially for multiple parametric uncertainties. For instance, using
an LMI formulation (see [25]), it is necessary to solve 2r 4+ 1 LMIs with r = 27,
Thus, for a large number of uncertain parameters (i.e. ng > 8), the resolu-
tion can be very difficult if not impossible. To overcome this difficulty, a ran-
dom estimation approach can be used to find an estimate w.(K) of w.(K).
Let 01, ... #( € © be i.i.d (independent and identically distributed) samples
generated according to a uniform distribution on ©, and define

. (K) = max J(69 K) (11)

1<i<n

For a given sample 8, the quantities J,. () ,K) and J(8),K), can be easily
computed with MatLab routines. For a detailed description on how to compute
these quantities, see for instance [9]. In fact the main difficulty is how to de-
termine the minimum number of samples 1 required so that J(0,K) is bounded
by w.(K) for almost all # € © with high probability. The following theorem
answers this interrogation.

Theorem 1. Let 81, --- 8" € © be i.i.d samples generated according to a
uniform distribution on ©. For a given K € Kgs, a > 0 and 8 > 0, define

i — (1) (4)
we(K) = max {adoo (0 ) + 8107 K) | (12)
then, for a number of samples n > In(1—p)/In(1—e), the Ho/H~ cost function
(7) is bounded by w.(K) with a confidence at least p, except possibly for those 0
belonging to a set of measure < e.



Proof. Let £ be the set of e-approximates of w.(K) defined as follows:
E={0€e®:w.—e<JOK) <w.+e}

thus, any value w, = J(0,K) with 8 € £, is said an estimate of the worst-case
performance w, with a precision level £. The problem is how many samples are
needed in order to obtain at least one sample belonging to the set £ with a high
probability p (e.g p = 0.99), and thus to obtain a reliable estimate of w.. Let e
be the probability so that # belong to the set &£, this probability is defined as
e = vol(£)/vol(®), where the notation vol(.) stands for the volume of the set
(.). Let us consider a succession of n drawings on the set ©, the probability to
obtain one sample belonging to &, is given by e+ >/ _, e(1— e)¥~1. The problem
is then to determine 7 such that e +_7_, e(1 —€)*~! > p. This inequality can
be rewritten as follows:
n

l—e—eZ(l—e)kflg 1-p
k=2

let us pose { = 1 — e, the inequality becomes:

(==X k"< 1-p
(—(1=QE+C+- 4+ < 1-p
(=(+C+ -+ == C = =)< 1=p
"< 1=p

therefore, taking the logarithm, we obtain:
n>1n(l—p)/In(l —e) (13)

Finally, if for a given p close to 1 and a given e close to zero we compute w.(K)
using (12) with a number of samples > In(1 — p)/In(1 —e), it can be asserted,
with a confidence p, that J(8,K) is bounded by w.(K) for all § € O, except
possibly for those 6 belonging to the set £ which have a probability measure
vol(£)/vol(®) no larger than e.

Remark 1. Inequality (13) shows that the number of samples required for
each uncertain parameter does not depend upon the number of these uncertain
parameters. This fact allows the treatment of multiple parametric uncertain-
ties without curse of dimensionality, nevertheless it depends on the value of
e, i.e. the reliability of the estimate. Indeed, a given value of e implies a cer-
tain level of precision &, which is unknown. However, € is closely related to e
(e = vol(£)/vol(@)), and then it can be interpreted as the reliability of the
estimation process.

3.2 Robust synthesis with guaranteed H,/H., cost

We have a set of plants M () parametrized by 6 € ©. The objective is to
find a single fixed controller K that ensures reasonable performance for a large
variety of plants.



More precisely, consider the Hs/Hoo cost function (7) which reflects the
performance of the closed-loop system. Our objective is to find, from an initial
stabilizing controller K;,;; of the nominal system, a static output feedback K
that reaches the best possible nominal performance and such that the worst-
case performance, i.e. the guaranteed Hs/H oo cost, is bounded by a pre-specified
value g.. For this purpose, we consider the following normalized cost function:

1 if A.(0) ¢ H
Y(O0,K) = % otherwise (14)

where A.(#) is the state matrix of the closed-loop system and J(#,K) is given
by (7). Finally, the problem that we want to solve can be formulated as follows.
From a given Ky, with ¢(0o,Knit) < 1, find K such that 1(6y,K) is as small
as possible, satisfying:

Y(0,K) < rgleaém/}(&ff) < ge (15)

where g, is the specified level of robust performance. For the same reasons as
aforementioned, the exact resolution of this problem, is very difficult especially
in the case of multiple parametric uncertainties. To overcome this drawback, in
this paper we adopt a random optimization technique that approximately solves
this problem.

As we will see further, the proposed solution to solve this problem requires
an initial stabilizing controller and a procedure able to generate a sequence
of controllers with a decreasing cost function. Of course, this can be done only
under certain feasibility conditions. This is the reason why, we consider the class
of problems satisfying the following assumptions:

Assumption 1. Let Kg be the set of nominal stabilizing controllers and K the
set of bounded controllers:

Ks={K € R™*?:4(6y,K) < 1}
. (16)
K = {K e Rm*p . Eij < [K]i,j < kij VZ,]}

Note that the entries [K]; ; of the matriz K are constrained to lie in some known
intervals Eij < [Kij < kij- The solution set KN Kg has a nonempty interior.

Assumption 2. For an initial stabilizing controller KV, we define the set of
possible y-nominal-stabilizing controllers as follows:

K(y) ={K € Ks :4(60,K) < 7} (17)

where v is such that Ymin < ¥ < Ymaz, With Ymin = infrxeis ¥(60,K) and
Ymaz = ¥(00,KM). For a given Ko € K(), we consider the following set:

S:{KEKsiK:KO-I-AK,AKEKd} (18)



where Kq = {Ax € R"™*P : |[Ak]l;,; < d}. For any v with Ymin < ¥ < Ymaaz»
the set SNK(y — A,) has a non empty interior.

Assumption 1 guarantee that a stabilizing controller can be found in K.
Assumption 2 guarantee that in a vicinity of a given stabilizing controller, it
is always possible to find a best new controller. Based on these feasibility as-
sumptions, the following section presents random search procedures allowing
the obtention of the aforementioned requirements.

3.2.1 Preliminary

The problem of finding a stabilizing controller which belongs to K can be
solved using the random search procedure described in Algorithm 1.

Algorithm 1.

1. Generate a sample K € K according to a uniform probability distribution
on the set K.

2. If (00,K) = 1, go to step 1, otherwise stop.

The convergence of this algorithm is stated in the following theorem, which
is proved in the appendix.

Theorem 2. Let Assumption 1 be satisfied, then the Algorithm 1 converges, with
high probability, to an element of K N Kg. Moreover, the number of iterations
necessary to obtain a solution with a probability at least 1 — & with 6 € (0,1), is
given by n > In(8)/In(1 — &), where £ = Pr{K € KN Kg}, (the notation Pr{.}
represents the probability of the event {.}).

Note that the convergence of this algorithm can be very slow if the proba-
bility ¢ is too small. In this case, the problem of finding an initial stabilizing
controller can be solved using the gradient-based method presented in appendix.

This random search procedure can be extended in order to find a stabilizing
controller which in addition ensures a desired level of performance. Let v be a
specified level of nominal performance. For a given stabilizing controller (which,
for instance, can be found using Algorithm 1), the problem is now to find a
~-nominal-stabilizing controller, that is, a controller K such that ¢ (6y,K) <
Y0 < 1. A solution of this problem can be found using Algorithm 2.

Algorithm 2.

1. Select a desired level of nominal performance -y, an initial controller
KW e K, a domain of exploration [—d,d] with d > 0, a decreasing step
Ay with0 <A, <1 (e.g. Ay =10"%), and let i = 1.

2. Generate a sample Ag? € Kg = {Ax € R™*? : |[Ak]|i,; < d}, according
to a uniform probability distribution on K4, and such that K(i)+AS[? € Ks.



3.0 (00,5 + AR) < Y0, KD) — Ay let KD = KO + A and
i =1+ 1, otherwise go to step 2.

4. If (80, K9 > 40, go to step 2, otherwise stop.

Let us consider the it iteration of this algorithm, the principle is to find, by
random search, in a neighbourhood of the matrix K=" obtained at the pre-
ceding iteration, a new matrix K9 such that 1 (8y,K %) < (6, K1) — A,
This procedure is repeated until ¢ (fy,K (i)) < Y0, we obtain thus a y-nominal-
stabilizing controller. The convergence of algorithm 2 is stated in theorem 3,
which is proved in appendix.

Theorem 3. Let Assumption 2 be satisfied. For a given level of nominal perfor-
mance o, the sequence {K(i)} obtained using Algorithm 3 converges, with high
probability, to a solution K € K(v0). Moreover, the number of trials necessary
to obtain a solution is bounded.

3.2.2 The RBA algorithm

We consider now the problem of guaranteed quadratic cost (15). Let K be
the nominal controller such that ¢ (6y,K) < 79 < 1, where 7o is the nominal
level of performance. Let g. < 1 be the specified (tolerate) quadratic cost. For
the nominal controller, it is necessary to verify that the worst-case performance
is such that w.(K) = maxpco ¥(0,K) < g.. If it exists # € © such that w.(K) >
ge, the controller must be rejected because the desired level of performance is
not satisfied. Following Theorem 1, the worst-case performance w.(K) can be
estimated by: '

e(K) = max (607, K) (19)
where 7 is the number of samples (13). If for the nominal controller K we have
we(K) > ge, another controller must be found with a new nominal level of
performance -y, such that v9 < v, < g.. This procedure must be repeated until
the desired Hs/Hoo cost is satisfied.

More precisely we want to find a nominal level of performance v, and the
corresponding nominal controller K, such that the constraint w.(K,) < g. is
satisfied. A solution of this problem can be found using the following random
optimization procedure, based on a bisection method, called random bisection
algorithm (RBA).

Algorithm 3 (RBA).
1. For a given p close to 1 and a given € close to zero, generate n i.i.d samples

o) ... o) ¢ @, according to a uniform probability distribution on the
set O, withn > In(1 — p)/In(1 —e).

2. Select y1 = Y0, vs = g and an accuracy €.

3. Using Algorithm 1, find a stabilizing controller Ky, .



4. Compute v = (yr +7s)/2.

5. From K, and using the Algorithm 2, find a controller K,, such that

6. If w.(Ky) > vs then yr = otherwise vs = 7.
7. If v — ~v1 > 2e7vyr goto step 4.
8. If w.(K,) > ge goto step 2 otherwise stop.

Theorem 4. Let Assumptions 1 and 2 be satisfied, and let 7, be the smallest
nominal level of performance implying that the worst-case performance is less
than or equal to the specified guaranteed cost g.. Then, Algorithm 3 converges
to a controller K, satisfying w.(K,) < g. and ¥(00,K,) = 4n, where 4y, is an
approzimation of v, with a relative accuracy of €.

Proof. This algorithm requires:

— a stabilizing controller K;,;; (step 3),
— a y-nominal-stabilizing controller K,, (step 5),
— an estimation of the worst-case performance w.(K,) (step 6).

As is easily seen from Theorems 1, 2 and 3, these requirements are satisfied.
Now, assume that there exists a controller K, for which the corresponding
nominal performance 7, is such that: vo < v, < ¢c and w.(K,) < g.. After N
iterations, Algorithm 3 produces the following sequences: {v1, 72, -+ ,2yn} and
{Ki, K>, -+ ,Kn}, where v; (i = 1,--- ,N) is the nominal performance of the
controller K; at the it" iteration. The bisection method ensures that 1 <% <
vs, Y1 < Yo < vs and ys—yr = 27%(g9.—"0), thus the quantity |y;—~,|, decreases
as the number of iterations increases. On exit, yn = V’g“ = 4y is guaranteed to
approximate 7y, within a relative accuracy of €, that is |(yr +vs)/2 — Yn| < €Vn.
Since (0o, Kn) = An, it follows that the corresponding controller K satisfies
w.(Kn) < g. because ¥, is an approximation of the smallest nominal level of
performance satisfying the guaranteed cost g..

4 Numerical examples

In this section, the effectiveness of the presented method to deal with a large
number of uncertain parameters is tested on two numerical examples. The first
one gives a comparison with the GA-LMI method described in [25]. The second
example is dedicated to the robust synthesis of a SOF controller for the lateral
motion of an aircraft. All the experiments are performed using a 1.2 Ghz Celeron
personal computer.
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4.1 Robust design with guaranteed #H,/H,, cost

As in [25], consider the three-state unstable plant with the following equa-
tion:

0 10 2 0 1
z(t) = -1 1+ Aags 0 x(t) + 1 u(t)+ | 0
0+ Aa31 2 -5+ Aa33 0+ Ab31 1

y®)=[0 1 0]a@)

01 0 0
2)=10 0 1 |z@®)+ | 0 | u(®
00 0 1
zoo(t):{g : g}x(t)—i-[(l)]u(t)

where |Aags| < 0.5, |Aas;| < 0.8, |[Aags| < 1, |Absi| < 0.5. Using Algorithm
3 with: g. = 0.8, @ = 8 = 1, |[K]i,j| < 5, n = 1200 (p = 0.995, e = 0.005),
e = 0.001, d = 0.025 and A, = 0.001, we obtain K = 4.889. The estimate of
the worst-case performance is then w.(K) = 0.6349.

Performance Method of [25], GA-LMI Proposed method RBA
(Pentium 4, 1.8 Ghz CPU) | (Celeron(TM), 1.2 Ghz CPU)
K 4.5398 4.889
1G22 1.488 0.9886
[1Goll? 2.024 0.7502
Searching time 77.11 sec 84.64 sec

Tab. 1. Comparison of the proposed method with the GA-LMI.

A comparison between the proposed method (RBA), and the GA-LMI ap-
proach [25], is shown in Table 1. Clearly, this comparison shows the pessimistic
results obtained with LMI approach. In addition, since the computer used is less
powerful than a 1.8 Ghz Pentium 4, one can conclude that the searching time
of the RBA is comparable with GA-LMI method.

For practical use of the algorithm, Table 1 summarize the influence of the
parameters €, d and 1 on the accuracy and the searching time.

Parameters | Accuracy | Searching time
e of 3 %
d\ - /
n/ of w. /

Tab. 1. Effect of the parameters on accuracy and searching time.
(/' increase, \: decrease, - : no effect)
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4.2 Robust design with guaranteed quadratic cost

In this section, we consider the synthesis of a robust static output feedback
controller for the lateral motion of an aircraft. The multivariable model consists
of four states, two inputs and three outputs. The state space equation is given

by [1]:

0 1 0 0 0 0
o 0 L Ls L, 0 —3.91
W=\ v 0 Ys -1 | *OF) ooz o |0

(9/VI)Ng Np Np+NzYz N.—Ng 253 0.31

The inputs u; and us represent the rudder and aileron deflections, while the
state variables x1, z2, 3 and z4 are the bank angle, its derivative, the side-slip
angle, and the yaw rate, respectively. The output equation (measured variables)
is given by:

10 0 0
y#)=10 0 1 0
0 0 01

Let 6 be the vector of uncertain parameters, and 6y its nominal value:

x(t)

0 =[L, Lg L. g/V Yz N3 N, Ns N,|"

fo = [-2.93 —4.75 0.78 0.086 —0.11 0.1 —0.042 2.601 —0.29]7

These uncertain parameters are allowed to vary 85% around the nominal values.
To show the flexibility of the proposed approach, we consider here the resolution
of the robust static output feedback problem with guaranteed quadratic cost,
i.e. we want to find K such that:

J(O.K) = /0 T o7 Qa(t) + u(®)T Ru(®)] dt < g. (20)

where the weighting factors Q and R are positive symmetric matrices. This
problem can be solved by the proposed method, without modification except
obviously for the computation of the criterion. Using Algorithm 3 with: R = I,
Q =1L, g = 097, |[K]; ;| <15, n = 1200 (p = 0.995, e = 0.005), ¢ = 0.001,
d = 0.025 and A, = 0.001, we obtain the following controller:

K= 1.1682  6.9827 —10.1368
| —1.0936 —1.8573  3.5859

The estimate of the worst-case performance is then w.(K) = 0.962. For com-
parison with the work [22], we consider now the robust stabilization by state
feedback controller (i.e. C' = I). The vector of parameters is allowed to vary
85% around its nominal value. Using Algorithm 3 and letting @ = 0.017 as in
[22], we obtain the following robust controller:

| —4.8142 —-12.5158 —2.0299 —-7.8334

K= —6.1027 —-15.6165 —2.7077 —9.3598
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The worst-case performance is then 0.903 < v,4.. In [22], a probabilistic LMI
approach was used to solve this problem and it was concluded that the lar-
gest uncertainty for which there exists a robust controller is about 15%. This
comparison shows that the method presented in this paper is less conservative.

5 Conclusion

The intrinsic complexity of the static output feedback controller (SOF) is
increased by considering the inevitable multiple parametric uncertainties in the
process model. Consequently, there is no systematic procedure, both analytic
and numeric to find a satisfying static output feedback controller. In these condi-
tions, heuristic approaches seem a good alternative for this task. In this frame-
work, a random optimization technique, based on a bisection method, has been
proposed to find a robust static output feedback controller in the context of mul-
tiple, possibly non linear, parametric uncertainties. Numerical examples, have
been presented which demonstrate the flexibility and the practical applicability
of the proposed design method.

A possible direction for future work is to improve the efficiency of the pro-
posed algorithms. For example, the convergence properties of Algorithm 2 can
be improved by including a parabolic line search method. Another future work
is to extend the proposed method in order to solve the problem of finding a
robust SOF-controller that realizes the best compromise between Hs and Hso
performance, i.e. to find a Pareto-optimal controller.

Références

[1] B. D. O. Anderson and J. B. Moore. Optimal control, linear quadratic methods.
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[2] D. Arzelier and D. Peaucelle. An iterative method for mixed hs/hs synthe-
sis via static output-feedback. 41st IEEE Conference on Decision and Control
(CDC’2002), Las Vegas (USA), pages 3464-3469, 2002.

[3] A. Astolfi and P. Colenari. Hankel/toeplitz matrices and the static output
feedback stabilization problem. Mathematics of Control, Signals, and Systems,
17(4):231-268, 2005.

[4] R. E. Benton and D. Jr. Smith. Static output feedback stabilization with prescri-
bed degree of stability. IEEE Transactions on Automatic Control, 43(10):1493—
1496, 1998.

[5] D. Bernstein. Some open problems in matrix theory arising in linear systems and
control. Linear Algebra and its Applications, 162-164:409-432, 1992.

[6] Y. Cao, J. Lam, and Y.-X.M. Sun. Static output feedback stabilization: An ilmi
approach. Automatica, 34(12):1641-1645, 1998.

[7] M. Chilali, P. Gahinet, and P. Apkarian. Robust pole-placement in lmi regions.
IEEFE Transactions on Automatic Control, 44(12):2257-2270, 1999.

13



18]

9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]
[18]
[19]
[20]

[21]

22]

23]

[24]

25]

[26]

[27]

E.J. Davison and S.H. Wang. On pole assignment in linear multivariable systems
using output feedback. IEEE Transactions on Automatic Control, (8):516-518,
1975.

J. Doyle, B. Francis, and A. Tannenbaum. Feedback Control Theory. Macmillan
Publishing Co., 1990.

G. Garcia, B. Pradin, S. Tabouriech, and F. Zeng. Robust stabilization and
guaranteed cost control for discrete-time linear systems by static output feedback.
Automatica, 39(9):1635-1641, 2003.

J. C. Geromel, C. C. Souza, and R. E. Skelton. Static output feedback controllers:
stability and convexity. IEEE Transactions on Automatic Control, 43:120-125,
1998.

L. El Ghaoui, F. Oustry, and M. AitRami. A cone complementarity linearization
algorithm for static output-feedback and related problems. IEEE Transactions
on Automatic Control, 42:1171-1176, 1997.

G. Gu. On the existence of linear optimal control with output feedback. SIAM
Journal Control and Optimization, 28:711-719, 1990.

P. Hagander and B. Bernhardsson. On the notion of strong stabilization. IEEFFE
Transactions on Automatic Control, pages 927-929, 1990.

D. Henrion, S. Tabouriech, and G. Garcia. Output feedback robust stabilization
of uncertain linear systems with saturating controls. an lmi approach. IEEE
Transactions on Automatic Control, 44(11):2230-2237, 1999.

H. Kimura. A further result on the problem of pole assignment by output feed-
back. IEEE Transactions on Automatic Control, 25(3):458-463, 1977.

V. Kucera and C. E. De Souza. A necessary and sufficient condition for output
feedback stabilization. Automatica, 31(9):1357-1359, 1995.

V. B. Larin. Stabilization of the system by static output feedback. Applied and
Computational Mathematics, 2(1):2-12, 2003.

F. Leibfritz. An lmi-based algorithm for designing suboptimal static h2/hinf
output-feedback controllers. SIAM J. Control. Optim., 39(6):1711-1735, 2001.
J. Matyas. Random optimization. Automation and Remote control, translated
from Avtomatika i Telemekhanika, 26(2):246-253, 1965.

D. Peaucelle and D. Arzelier. An efficient numerical solution for hs static output
feedback synthesis. European Control Conference (ECC’01), Porto (Portugal),
pages 3800-3805, 2001.

B.T. Polyak and R. Tempo. Probabilistic robust design with linear quadratic
regulators. Systems € Control Letter, 43:343-353, 2001.

E. Feron S. Boyd, L. El Ghaoui and V. Balakrishnan. Linear Matriz Inequa-
lities in System and Control Theory. Studies in Applied Mathematics. STAM,
Philadelphia, PA, 1994.

J. C. Spall. Introduction to stochastic search and optimization. John Wiley and
Sons, 2003.

C. C. Sun, H.Y. Chung, and W. J. Chang. ha/hs robust static output feedback
contol design via mixed genetic algorithm and linear matrix inequalities. Journal
of Dynamic Systems, Measurement and Control, 127:715-722, 2005.

V.L. Syrmos, C.T. Abdallah, P. Dorato, and K. Grigoriadis. Static output
feedback-a survey. Automatica, 33(2):125-137, 1997.

R. Tempo, G. Calafiore, and F. Dabbene. Randomized algorithms for analysis
and control of uncertain systems. Springer-Verlag, 2004.

14



[28] R. Toscano. A simple method to find a robust output feedback controller by
random search approach. ISA Transactions, 45(1):35-44, 2006.

[29] R. Toscano and P. Lyonnet. Stabilization of systems by static output feddback via
heuristic kalman algorithm. Journal of Applied and Computational Mathematics,
5:1-12, 2006.

[30] A. Trofino-Neto and V. Kucera. Stabilization via static output feedback. IEEE
Transaction on Automatic Control, pages 764-765, 1993.

[31] J. G. VanAntwerp and R. D. Braatz. A tutorial on linear and bilinear matrix
inequalities. Journal of Process Control, 10:363-385, 2000.

[32] X. A. Wang. Grassmannian, central projection, and output feedback pole assign-
ment of linear systems. IEEE Transaction on Automatic Control, 41(6):786-794,
1996.

[33] D. Youla, J. Bongiorno, and C. Lu. Single loop feedback stabilization of linear
multivariable dynamical systems. Automatica, 10:159-173, 1974.

Appendix

Al. Proof of theorem 2

Let us consider n iterations of the Algorithm 2, the probability so that
K ¢ KN Kg is given by the binomial probability distribution

n! r n—r n
PUK¢KNKs) = | 0077 =a-¢" @
where 7 is the number of success (i.e. the number of times that K € X N Kg)
and £ the probability of successi.e. ¢ = Pr{K € KNKgs} = vol(KNKg)/vol(K).
The notation vol(.) stands for the volume of the set (.). By Assumption 1 we
have £ > 0, it is then clear that lim,, ., (1 — &)™ = 0, the algorithm converges
then, with high probability, to a solution. From (21), the number of iterations
necessary to obtain a solution with a probability at least 1 — § is such that
(1 =&)" < 6 which gives n > In(d)/In(1 — §) < 0.

A2. Proof of theorem 3

For a specified decreasing step A, the maximum number of success neces-
sary to obtain a controller K such that 1(6y,K) < 7o, is given by:

N— [%j)_%w (22)

Where K1) is the initial stabilizing controller of the sequence {K (¥}, and [.]
is the minimum integer greater or equal of the argument. Our objective is now
to show that each success is obtained after a finite number of trials with high
probability. Let K® be the controller obtained after a number of i iterations
(i.e. after i success), we have 1 (y,K (V) = (). Consider the following sequence:

Sequence 1.
L. Generate a sample Ax € Kqg = {Ag € R™*? : |[[Ak]|;; < d}, according
to a uniform probability distribution on K4, and such that KW +Ag € K,.
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2. If (00, KD + Ag) <9 — A, then stop, otherwise go to step 1.

when this sequence is stopped (i.e. when we have a success), the cost function
decreases at least of A,.

Consider n iterations of this sequence, the probability so that K9 + Ag ¢
K(y® — A,) is given by the binomial probability distribution:

Pr{(K + ) £ KOO - 8)} = |y -0y

n— 7“) r=0

= (1—¢iyn (23)

where r is the number of success and £(?) the probability to find K + A such
that ¢ (0o, KD + Ag) <7 — A, that is:

g(i)

Pr {(KU) +Ag) € K(® — AV)}

_ vol(&in K@ —A,))
= vol(S)) (24)

where vol(.) is the volume of the set (.), and S; is the searching set at the step
i, that is: '
Si={K €Ks: K=K+ Ag, [[Ax]i;| < d} (25)

By Assumption 2, we have £ > 0, for ¢ = 1,2,...,N, it is then clear that
lim,, o (1— £(i))" = 0, thus the Sequence 1 is stopped with a probability one as
n — oo. From (23), the number of trials 7;, at the iteration number i, necessary
to obtain (0, K" + Ag) < v — A, with a probability at least 1 — 4, with
§ € (0,1), is such that (1 — ¢®)7 < § which gives:

7 > In(8)/In(1 - £9) < 00 (26)

the total number of trials 7, necessary to obtain a solution is then given by
7=YN, 7, consequently we have:

T < NTpmaz, With: Tpee = 1@%}& T (27)
from (26) we have:
In(§
Toas > n(9) < o0 (28)

In <1 — min f(i)>
1<KV

it follows that there exists a worst-case probability &,. such that:

In(9) . - i
— : < (7‘)
Tmaz = (1 — ) < oo, with: 0< &y < 1221}\{5 (29)
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consequently, from (27) and (29) we have:

In(6V)
—_— 30
T<1n(1_€wc)<oo (30)
Of course, the worst-case probability &, is unknown, thus the total number of
trials cannot be evaluated in advance. However, the result (30) shows that the
Algorithm 2 leads to a solution in a finite number of trials. Indeed, we have:
In(6™)

T<m<ﬁ22<00 (31)

where f3 is the constant —In(6"V) and z = 1/&,..

A3. The initial stabilizing controller problem

The implementation of the Random Bisection Algorithm requires an initial
stabilizing controller. As seen previously, this can be done using Algorithm 1. In
the case where this algorithm does not converge sufficiently fast, this means that
the probability ¢ is too small. To solve this problem it is proposed a gradient-
based method inspired to the work of Vladimir Larin [18]. Consider the nominal
system described by:

z(t) = Ax(t) + Bu(t)
)= onte (32
and the following modified system:
z(t) = (A + pl)z(t) + qBu(t)
Lo =Gy O (3

where the scalar p is chosen such that (A + pl) € H. The factor ¢ will be
adjusted in order to obtain K € K. The main idea is then to find a stabilizing
SOF-controller of the modified system which stabilizes also the initial system.
This problem can be solved iteratively by decreasing the parameter u. More
precisely, consider the following cost function:

o0
J= / 2O 2(t)dt (34)
0
The gradient of this function with respect to K is given by (see [18]):
0J T p2 AT T

with A, = A+ pul + ¢BKC. The principle is then to compute via gradient-
based method a stabilizing matrix K with a decreasing factor u. This proce-
dure is stopped when (A + BKC) € H. Note that the choice of u such that
(A + pl) € H makes trivial the choice of the initial matrix K required by
the gradient-based method. Indeed, since (A + pI) is Hurwitz, it is possible to
accept as initial value K = 0. The following algorithm is based on this principle.
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Algorithm 4.
1. Select p such that (A+ pl) € H, g =1 (default), K = 0.

2. Using a gradient-based method with (35), compute a new stabilizing matriz
K.

3. If (A+ BKC) ¢ H, p= u/2 goto step 2, otherwise stop.

Step 2 can be performed using the Newton-Gauss method i.e.:

1
aJ (0J\"| oJ
K1 = Ky — pr l ( )

K (36)

0K \ oK

K=K,

where the factor py can be chosen constant, or can be adjusted at each
iteration by solving the following problem:

=arg min_ ||T||2|T" 37
p=arg _min__ [T/T": (37)
where T is the eigenvector matrix of A.. In other words, the factor pj is de-
termined in order to minimize the sensitivity of the closed-loop state matrix to
unstructured perturbations [28].

Example. Consider the problem of finding an initial stabilizing controller for
the nominal system given in section 4.2. Using Algorithm 4 with = =5, ¢ =1,
pr = 0.1 gives the following matrix:

| 0.2445 —-0.3954 2.2139

K= 0.8750 —2.7858 0.4883

in only one iteration. Assume now that it is required to find a stabilizing matrix
K such that:

KeK={KeR™?:-1<[K];; <1Vij} (38)

if there exists one such matrix, it can be obtained by increasing ¢ until
K € K. Using Algorithm 4 with p = =5, ¢ = 3, pr = 0.1 gives the following
matrix:

[ 0.0815 —0.1318 0.7380 |

K=1 02017 -0.9286 0.1628 |

in only one iteration. For comparison, using Algorithm 1, gives the following
matrix K € K: i
0.2662 0.5548 0.0184

K=1 09605 02369 —0.7146

in 21 iterations.
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