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Abstract 

The study of the human skin mechanical properties is a key point to better understand surgery, skin ageing and 
pathologies. As the skin is a living tissue, it must be studied in vivo, hence analytical solutions are really difficult to 
obtain. In this study, a new stochastic inverse method for the identification of its mechanical properties is proposed. The 
developed optimization method is first presented. It is based on an iterative stochastic approach which ensures the 
identification of a global extremum. The suction actual case study is then analyzed through comparisons between 
experimental data and finite element models of this test. Only the elastic components of the skin are considered here. 
The solutions for the Recursive Least Squares and Gauss-Newton's problems are finally compared with the proposed 
approach to conclude on this study and to briefly present our future works. 

Keywords: human skin, in vivo, suction test, finite element, inverse method, stochastic approach 
 
 
 
 
 
 
 

                                                 
∗ Corresponding author: E-mail: alexandre.delalleau@enise.fr 



Engineering Optimization 

1. Introduction 

The mechanical properties of living tissues are of potential interest in the identification of certain diseases, for 
assessing therapeutic intervention, or for predicting the effect of trauma. Skin is a complex medium which is 
made up of three layers: the epidermis, the dermis and the hypodermis (see Figure 1). Due to the specific 
structure of the dermis, the skin presents a nonlinear viscoelastic anisotropic quasi incompressible mechanical 
behaviour which has to be studied in vivo [1]. To identify the skin mechanical properties, complex numerical 
models which lead to multi-parameter optimization problems are usually studied [2]. When considering a 
large number of parameters to be identified, the convergence of standard optimization methods [3] is difficult 
to obtain [4, 5]. The optimization algorithms thus need to reach the solution despite the local minima and 
stabilization problems. Moreover they are known to be very sensitive to the initial set of values and require 
specific stabilization procedures (e.g. linesearch methods [6]). Finally, as clinical studies are performed with a 
large number of measurements, the mechanical parameters need to be identified rapidly. 
Hence the developed stochastic method aims at identifying the mechanical properties of the skin. The suction 
deformation test which is performed on the volar aspect of the forearm of a subject is first described. The 
obtained experimental results are then compared to those related to finite element models of this test through 
an optimization computation. This process is used so as to minimize the difference between the experimental 
and the numerical data. To underline the usefulness of the proposed method, comparisons with standard 
Gauss-Newton's and Recursive Least Squares methods are drawn for a blind test. It consists in using 
simulated curves as if they were experimental ones. These methods are then compared for the identification of 
an actual suction experiment. The reliability of the proposed approach and its sensitivity to the random 
samples are finally discussed to draw some conclusions and to briefly present our future works. 
 

 
FIGURE 1: The multi-layered structure of the skin 
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2. Method 

The proposed method is divided into three stages. First the suction experiment is performed and modeled 
through the finite element method. A numerical data base which is made up of simulated curves that are 
obtained for different values of the mechanical parameters is then created. 

2.1. The suction experiment 

The in vivo suction test [7, 8] consists in applying a negative pressure at the skin surface. In our case study, 
this test is performed on the volar aspect of the forearm skin, using a Cutometer CM570 (Courage & Khazaka, 
Cologne, Germany). The skin is sucked into a cylindrical aperture of 6mm diameter forming a dome whose 
deflection M  is recorded for each step of pressure tp  (see Figure 2). Figure 3 presents an actual curve which 
was obtained for a pressure up to 100mbar, applied at a rate of 20mbar.s-1. The experimental curves generally 
contain 50 to 100 points which is assumed to be sufficient to perform the inverse computation. As an 
analytical solution for the suction problem related to complex behaviour laws is difficult to obtain, finite 
element numerical models are created. 

 
FIGURE 2: The suction experiment principle 
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FIGURE 3: Experimental suction curve obtained on the volar aspect of the forearm (thickness ≅ 1mm) 

2.2. The finite element model 

The numerical simulations are performed with the SYSTUS™ finite element software. To model a complex 
structure such as skin, several assumptions need to be made. The skin is considered to be a homogeneous 
medium, its structural response is only considered here. Due to the low stress rate, the mass inertial effects are 
neglected and computations are thus performed using a quasi-static calculation. The geometry is considered to 
be axisymmetrical (see Figure 2) and the skin was modeled as a single layer whose thickness is the one 
corresponding to the epidermis and the dermis. It is measured using a high frequency (20MHz) ultrasound 
device (Dermcup, ATYS Medical) [9]. Indeed, results from literature clearly state that, due to the low elastic 
properties of the hypodermis [10, 11], the effects of sub-dermal structures can be neglected [8, 12, 13]. The 
resolution of the ultrasound device [9] and the papillary structure of the epidermis and the dermis [1], prevent 
from distinguishing these layers. Hence, they are considered as melted. Moreover, this leads to simplify the 
calculations and to avoid finite element numerical instabilities [14]. In contrast to studies that account for the 
viscoelastic and the anisotropic behaviour of the skin [15], our approach consists in identifying its isotropic 
elastic mechanical properties. Second order elements with a reduced integration scheme so as to avoid 
volumetric locking are used for the mesh. As adhesive tapes are used to paste the suction device to the skin, 
the nodes corresponding to this interface are assumed to be restrained through axial and lateral directions (see 
Figure 2). An identical restriction was applied to the lateral displacements of the symmetrical axis nodes to 
properly computer the 2D calculations. 
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The suction test usually involves large deformations and large displacements in the skin. Hence, the behavior 
law and the formulation that are used should account for the geometrical nonlinearity of the material [16]. As 
standard hyperelastic behaviors (e.g. neo-Hookean or Mooney-Rivlin potentials) cannot be used to model the 
skin [16, 17], a specific compressible law, based on an extended neo-Hookean potential [4, 13] was developed 
(see Equation (1)). 1X and 2X are the elastic parameters, 1J  and 2J  denote the first and second reduced 
invariants of the right Cauchy-Green deformation tensor C  (they can be expressed as a function of the 
standard invariants 1I  and 2I  of C  see Equations (2.a) and (2.b)), ( )Fdet=J , where F  is the deformation 
gradient, J  is the volume ratio and κ  the compressibility constant of the media. For small strains, a 
relationship can be drawn between the compressibility constant and Poisson's ratio υ  (see Equation (3)). 
Three mechanical parameters thus need to be identified: 1X , 2X and υ . 
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2.3. The principle of the inverse method 

The main originality of the proposed method lies in the construction of a pre-calculation data base: the 
simulated space (see Figure 4.a) [5]. The results of several numerical calculations (deflection as a function of 
the applied pressure), relating to the different combinations of the mechanical parameters to be determined, 
are collected in this data base Ω . Indeed, clinical studies are performed with a large number of measurements. 
With the use of standard inverse methods, a finite element computation is required for each identification step. 
Redundant solutions to the numerical models may thus be calculated. In the present procedure, all the finite 
element models are performed only once. Furthermore, such experimentation is usually performed by medical 
practitioners, hence our method needs to be a FEM-free process (see Figure 4.b). 
 

 
FIGURE 4: (a) Simulated space defined for a compressible neo-Hookean law (2 mechanical parameters: X1 and ν). (b) The 

proposed approach. 
 

a) 
b) 
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The simulated space Ω  which proposes the variation of the deflection as a function of the mechanical 
parameters for each step of pressure is defined by Equation (4), where [ ]TXX υ21=x , and, for u  points of 
measurement, ( )upp L0=p . Its variation field is: X1(Mpa)∈[0.01;0.1] per step of 0.01MPa, 
X2(Mpa)∈[0.1;4.9] per step of 0.3MPa, ν∈[0.2;0.48] per step of 0.04 and p(mbar)∈[0;100] per step of 2mbar. 
 
 ( ) ( )pxΩpx:Ω SS ,, a  (4) 

The forward problem thus consists in identifying the parameters *
1X , *

2X  and *υ  that minimize: 
 

 ( ) ( ) ( )xDxDx: T

2
1

aJ  (5) 

where, for iteration j  and u  points of measurement M  (see Figure 3), ( ) ( ) ( )[ ]j
u

jTj dd xxxD K1= , with 

( ) ( ) ( )t
j

St
j

t ppMd ,,* xΩxx −= , [ ]TXX **** υ21=x  and ut ,, L1= . 
During the calculation, non-simulated values are identified. These are simply calculated with cubic 
Lagrange’s interpolations of the existing data. 

2.4. The fundamentals of the stochastic algorithm 

In this paper a heuristic method to solve the following optimization problem is proposed [5]: 
 
 ( )xx Jminarg* =  (6) 

It does not require the derivatives of the cost function J  nor its mathematical expression (i.e. the values of 
J  are here obtained through numerical simulations of the suction experiment). The set nRx ⊂  represents the 
admissible solutions. To solve this problem, the principle depicted in Figure 5 is considered. N  vectors that 
are uniformly distributed between the bounds [ ]Tnxx L1=x  and [ ]Tnxx L1=x  are first determined, at each 
iteration, through a uniform random generator: 
 
 { }jN

jj xxxX ,,,j K21=  (7) 

where, j
k x  is the kth vector generated at the iteration j : [ ]Tj

nk
j

k
j

k xx L1=x , and j
lk x  is the lth component of 

j
k x  with nl ,, L1= . These random vectors are then used to compute their related cost functions J  (see 
Equation (5)) and they are finally sorted according to their increasing values i.e.: 
 
 ( ) ( ) ( )j

N
jj xxx JJJ <<< L21  (8) 

The principle of the algorithm is to modify the bounds x  and x  of the random generator until the minimum of 
the cost function is reached. Obviously, this minimum is characterized by a difference between the bounds 
close to zero (i.e. the euclidian norm of the difference xx −  is small). Hence, the given problem is to find how 
to modify the bounds of the random generator to converge to the optimum. 
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To solve this problem the bN  best candidates are considered (i.e. bN  candidates that present the lowest cost 
function). The solution is assumed to be dissimilar from the bounds of the calculation space. For the iteration 
j , the bounds x  and x , of the random generator are then evaluated as follows: 

 

 nl
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=

=

≤≤

≤≤  (9) 

Nevertheless, the final result which is obtained is not an exact but a near optimum that is closely related to 
number of samples N . The minimum number of samples required to obtain a reliable optimum, must be 
chosen to as [16, 17]: 
 
 ( ) ( )eN −−≥ 11 ln/ln ρ  (10) 

where ρ  is the confidence ( ρ  must be close to 1 e.g. 990.=ρ ) and e  is an accuracy ( e  must be close to 0 e.g. 
010.=e ). 

 
FIGURE 5: Principle of the developed algorithm. 

 
One can note that this method can be modified through a Kalman procedure for an optimal updating of the 
statistical characteristics of the random generator [19]. Nevertheless, only the standard approach (see Figure 
5) is considered in this paper. 

2.5. Implementation of the stochastic approach 

The fundamentals of the stochastic algorithm were implemented in three stages [5]. First, the maximal and 

minimal boundary parameters [ ]TXX 00
2

0
1

0 υ=x  and 
T

XX ⎥⎦
⎤

⎢⎣
⎡=

00
2

0
1

0
υx  are defined. They usually 

correspond to the boundary values of the simulated space (Figure 6 step 0). N  values of this domain are then 
randomly chosen and, for each iteration j , their related solutions ( )pxΩ ,j

kS  with Nk ,,L1=  are calculated 
thanks to the simulated space (Figure 6 step 1). They are finally sorted according to the quadratic error jE  
which is defined in Equation (11). The minimal and maximal values of the bN  firsts sorted results are finally 
selected for each mechanical parameter, to be the starting point of an other iteration (Figure 6 step 2). This 
process iterates till it satisfies a stop criterion jjj EEC −= −1 . The identified parameters are the ones 
corresponding to the final iteration best cost function. 
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FIGURE 6: Implementation of the stochastic approach for 67=N , 8=bN  and two parameters to be identified: 1Y and 2Y . 

 

3. Results 

3.1. Theoretical results 

To check the relevance of the stochastic algorithm (STO) and to assess the influence of the assumptions that 
are made, a blind test was performed. This test consists in using curves extracted from the simulated space as 
if they were experimental ones. The three known parameters, MPa0301 .=Xbt , MPa12 =Xbt  and 320.=υbt , are 
considered. 
To underline the usefulness of the proposed method, comparisons are drawn with the results of the standard 
Gauss-Newton (GN) [3] and Recursive Least Squares (RLS) methods [20]. 
For the iteration j , the GN scheme is described by: 
 
 jjj Wxx +=+1  (12.a) 
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For linesearch techniques it can be re-written to as: 
 
 jjjj Wxx α+=+1  (12.b) 

where jα  is a scalar which varies according to a 1D minimization of the problem at iteration j . Nonetheless 
the standard approach is only considered in this paper. The use of the jα  parameter is mentioned in the 
discussion. jW  is the descent direction which is defined through the jacobian matrix ( ) xxDF ∂∂= : 
 
 ( ) ( ) ( )( )pxΩpxFFFW ,,* j

S
TjjTjj M −=

−1

 (13) 

The RLS algorithm is based on the computation of ( )xD  for each step of measurement tp . To improve its 
reliability, the RLS technique was developed thanks to a forgetting parameter approach ( 900 .=λ ) [4, 20]. The 
time update equations are defined by: 
 
 ( ) ( )( )t

t
St

ttt ppM ,,* xΩxAxx −+=+1  (14) 

where ( ) 1
1

−

⎟
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⎛ += IHPHHPA t

TtttTttt λ , with ( ) t
tp

S
t

x
xpxΩH

,
, ∂∂= , ( )yI  is the yth order identity matrix, and tP  is 

the covariance matrix which is here initialized to ( )3IP =t . From step t  to step 1+t , this matrix is updated 
through: 
 
 ( ) 11 −+ −= t

ttttt λPHAPP  (15) 

and tλ  using the following equation [20]: 
 
 ( )001 1 λλλλ −+=+ tt  (16) 

This method was modified through a stabilization process which consists in running the calculations several 
folds on the same curve [4]. Hence, one iteration of the algorithm is then related to one run of the 
experimental curve and thus u  step of calculation are made. 
For both the GN and RLS methods, the initial parameters are equal to the minimal boundary values of the 
simulated space. The calculations were performed on a Pentium core-duo 1.6GHz, RAM 1Go. 
 
 

Method ( )MPa1Xid  ( )MPa2Xid  υid  CPUT(s) ( )µmE  
GN 0.03 1 0.32 3.1 0 
RLS 0.03 1 0.32 10.5 0 

STO N=102 0.029 0.93 0.34 2.5 0.09 
STO N=103 0.03 1.05 0.30 11.1 0.011 
STO N=104 0.03 1.01 0.32 58 0.002 

TABLE 1: Identified values for a blind test. MPa0301 .=Xbt , MPa12 =Xbt , 320.=υbt , µm10 5−=C , and 20=bN . CPUT is 
related to the computation time, E is the final quadratic error which is defined in Equation (11). 
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Table 1 presents the obtained results ( 1Xid , 2Xid and υid ) for the three different approaches. Random samples 
of 210=N , 310=N  and 410=N  are considered for the stochastic method. The convergence criterion 

jjj EEC −= −1  is equal to 10-5µm. One can remark that the GN and RLS algorithms reach the required 
mechanical parameters whereas the stochastic technique is unable. For each case study estimates are obtained. 
Nevertheless the error presents low values and the identified parameters are in good agreement with the 
required ones. The number N  of the random samples hardly influences the results whereas it strongly affects 
the computation time (CPUT). Hence, a compromise between CPUT and the calculation accuracy could be 
easily found. One can note that, according to Section 2.4, for an infinite number of samples, the required 
solution will be identified. 
 

 
FIGURE 7: Influence of the bN  sorted values on the obtained results. The results are obtained while considering MPa0301 .=Xbt , 

MPa12 =Xbt , 320.=υbt , µm10 5−=C  and 310=N . 

 
One can also study the influence of the bN  sorted values on the obtained results. Figure 7 plots the variations 
of the ratio xx btid  for each considered parameter. For 10<bN , the results show a significant identification 
error whereas for higher values of this criterion, the identified parameters remain stable. One can note that the 
accuracy of the problem seems to decrease for 50>bN . Moreover, the number of iterations necessary to reach 
the convergence ( µm10 5−=C ) linearly increases with bN  (see Figure 8.a). For actual cases study, bN  was thus 
chosen equal to 20. Nevertheless this point has to be discussed according to the number of random samples. 
Figure 8.b plots the influence of the ratio bNN  on the number of iteration. For every study cases and for a 
similar identification error, it decreases as bNN  increases. Nevertheless, this ratio should be chosen with care 
as the number or random samples strongly affects the computation time (e.g. s13.=CPUT  with 500=N  and 

5=bN , and s440.=CPUT  with 5000=N  and 50=bN ). 
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FIGURE 8: Influence of the bN  sorted values on the number of iterations. MPa0301 .=Xbt , MPa12 =Xbt  and 320.=υbt , 

µm10 5−=C . (a) Obtained results for 310=N . (b) Obtained results according to the ratio bNN  for 

[ ]433332222 1010571051052101057105105210 ××××××= ....N  and 

[ ]2001501007550403020105432=bN . 
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3.2. Experimental study case  

Table 2 presents the results corresponding to the experimental curve (Figure 3). For that study case, the 
stochastic approach shows the best results whatever the value of N  is. One can note that even if N  presents 
high values, the computation time can decrease if less iterations are needed to reach the convergence. Figure 9 
plots a comparison between the experimental and the simulated deflections obtained for the identified 
parameters. It shows that the results are in agreement. 
 
 

Method ( )MPa1Xid  ( )MPa2Xid  υid  CPUT(s) ( )µmE  
GN 0.016 0.1 0.48 3.2 43 
RLS / / / / / 

STO N=102 0.025 2.95 0.28 2.3 2 
STO N=103 0.026 3.1 0.26 1.4 2 
STO N=104 0.025 3.06 0.26 15.2 2 

TABLE 2: Identified values for an actual case study, µm10 5−=C , and 20=bN . CPUT is related to the computation time, E is the 
final quadratic error which is defined in Equation (11). 

 

 
FIGURE 9: Comparison between the experimental and the identified curves obtained for 310=N , µm10 5−=C , 20=bN . 

 
The GN algorithm stabilizes to the bounds of the simulated space and thus presents a high computation error. 
Indeed, such algorithms are known to be very sensitive to the initial set of values and to the problem 
nonlinearity. For initial values that are close to the stochastic identified ones, and for specific constant values 
of α  (e.g. 0.1, 0.01, see Equation (12.b)), the GN algorithm still diverges. Specific methods (e.g. Levenberg-
Marquardt [21, 22]) should thus be used to successfully perform the identification. 
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The RLS results are more difficult to analyse. For 900 .=λ , the calculation cannot stabilize for the specified 
convergence criterion, however, for higher values (i.e. µm10 2−=C  with jjj EEC −= −1 ) the convergence can be 
reached with a low computational error ( µm12.=E ). Indeed the RLS convergence shows oscillating values 
around the solution. These oscillations usually make the computation diverge (see Figure 10). Identical 
conclusions have been drawn for different values of 0λ . Figure 10 clearly states that the error is minimized 
around the 10th iteration. Due to the considered convergence criterion, the calculation still iterates and finally 
destabilizes until it reaches the bounds of the simulated space. 
 
Several sets of initial values were tested to study the sensitivity of both the GN and the RLS algorithms to the 
computation initialization. In every case these algorithms do not reach satisfactory solutions. According to 
these conclusions linesearch techniques should therefore be used for both these computations whereas the 
stochastic approach does not need any. 
 

 
FIGURE 10: Oscillating values of the RLS for a convergence criterion µm10 5−=C  and a forgetting parameter 9900 .=λ . 
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FIGURE 11: Mean values and standard deviations according to 50 cases study and different number of random values for the 

identified parameters 1Xid , 2Xid , υid . The results are obtained while considering µm10 5−=C , 20=bN , 310=N . 
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The relevance of the stochastic method was tested for 50 computations which correspond to different random 
samples. Figure 11 shows the influence of N  on the mean error and on the standard deviation of the final 
solutions for each calculation. Regarding to the proposed mean parameters, the standard deviation presents 
low values. As an example Figure 12 plots the identified parameters for 310=N  according to each case study. 
As one would expect (see Section 2.4) an increase of N  reduces the standard deviation. It would finally tend 
to 0 if N  tends towards the infinity, as the global minimum is reached. One could also remark that the mean 
values obtained for 210=N  are different than the ones related to 310=N  and 410=N . This clearly states that 
the number of random samples should be chosen with care and according to the problem. 
 

 
FIGURE 12: Identified mechanical parameters for the stochastic technique according to 50 random cases. µm10 5−=C , 20=bN , 

310=N . Experimental study case. 

 
This calculation was also successfully performed on 300 experimental curves (a thickness of the dermis 
equals to 1mm was considered for every individual [16]). Figure 13 presents the distribution of the 
identification errors according to theses study cases. The error mean value is about 1.6µm and the standard 
deviation equals 1.1µm which proves the accuracy of the proposed method. The most important error values 
(see Figure 13) are related to specific experimental curves that are probably related to measurement problems. 
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FIGURE 13: Distribution of the identification errors according to 300 experimental curves. µm10 5−=C , 20=bN , 310=N . 

 

4. Discussion 

In this article, a new stochastic approach which ensures the identification of a global minimum was 
developed. To set the theoretical background of this method, its fundamentals were first presented. A specific 
implementation of this algorithm was then proposed for the identification of the mechanical properties of the 
human skin. It consists in drawing comparisons through a data base between in vivo experimental results and 
the ones related to finite element models of the suction test. The proposed approach was then compared to the 
well-known Gauss-Newton and Recursive Least Squares optimization algorithms for a given blind test. This 
case study shows that good estimates can easily be identified whereas the exact solution requires an infinite 
number N  of samples. Hence, for theoretical tests deterministic algorithms presents better results. Finally an 
actual case study was considered. The stochastic solution was successfully compared with the GN and RLS 
ones. In our case study, the GN identification usually reaches the boundary values of the simulated space and 
the RLS approach oscillates around the solution. This was also tested for several other calculations. In most of 
the cases, identical conclusions can be drawn. Both processes are known to be sensitive to the initial values 
and, without a specific linesearch technique, they may oscillate around local extrema or diverge. For each 
iteration, a specific optimization procedure is thus required. Moreover, these standard methods necessitate 
evaluate the derivatives of the cost function of the problem. Time and memory consuming calculations which 
are not required by the stochastic approach are thus performed. 
 
The main advantages of the developed method lie in its relevance. Indeed, many parameters can be identified 
easily without neither computational divergence nor oscillating values. Furthermore, no initial set of values, 
which constitutes a critical stage for most of the optimization processes, is required. For the first step of the 
calculation, the bounds of the simulated space are simply considered. The stochastic method is theoretically 
able to reach the global minimum of the problem. However, this requires an infinite number N  of random 
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samples, hence, the obtained results should be interpreted in terms of probability ρ  and accuracy e  (see 
Equation (10)). To improve the presented results, various approaches to choose the N  random parameters 
were also analyzed. The Latin Hypercube Sampling (LHS) [23] was for example considered. However, each 
of these studied methods affects neither the convergence nor the identified parameters. 
 
This method will be from now on extended to the identification of the mechanical parameters of the human 
skin through more complex behaviour laws and multi-layered models. The viscosity of the skin tissue should 
be discussed for more reliable results. Rheological models [15, 17, 24] or mixture approaches [25] generally 
present a large number of parameters to identify, moreover, one can note that identical observations are 
proposed by multi-layered analyses [13, 14]. Hence, the proposed approach allows discussing easily the 
uniqueness of the solution which is a key-point to draw reliable conclusions on the results. 
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