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Abstract. This paper presents a new dynamic reliability approach which is able to
take into account the various operating conditions under which the considered sys-
tem has evolved (past and present). To this end, a di�erential model of failure rate
combined with the state space representation of the process is proposed, as well as a
parametrization procedure. A numerical example shows the practical applicability of
the proposed approach.
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1 Introduction

Traditional reliability methods are usually based on analysis of life-time data.
These data can then be used for the parametrization of models re�ecting po-
pulation characteristics, under the same conditions, as those constituted in the
data [3, 8, 2, 9, 7]. These models have proved their usefulness during design
phases, but are of limited interest in operational phases, because, in this case,
operational conditions are constantly changing. Indeed, a real system evolves
under various operating conditions, and this has a direct impact on its reliabi-
lity. Therefore, traditional reliability methods are not well adapted in estimating
system reliability under dynamic operating conditions.

However, as we will see, the traditional static reliability methods can be
extended to the dynamic case by taking into account the past degradations,
due to the past operating conditions under which the process has evolved. This
aspect is crucial in the operational reliability context.

From this point of view, the main objective of this paper is to give a model
able to predict the reliability in real time, that is, able to take into account
the history of process running. To this end, a di�erential model of failure rate
combined with the state space representation of the process is proposed, as well
as a parametrization procedure.

This approach is in contrast with the work presented in [4, 5] in which the
reliability prediction is based on the assumption that there are some measurable
variables re�ecting directly the degradation of the system. This assumption is
removed in this work. In the proposed approach all measurable variables are
used in order to predict reliability resulting from past and present time-varying
operating conditions.
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2 Process and dynamic failure rate model

We will deal with dynamical systems that are modeled by a �nite number
of coupled �rst-order ordinary di�erential equation

8><
>:

_x1(t) = f1(x1(t);::;xnx (t);u1(t);:::;unu(t))
...
_xnx(t) = fnx(x1(t);::;xnx (t);u1(t);:::;unu(t))

(1)

where _xi, i = 1; � � � ;nx, denotes the derivative of xi with respect to the time
variable t and u1, u2, � � � , unu are speci�ed input variables. We call the variables
x1, x2, � � � , xnx the states variables. They represent the memory that the dy-
namical system has of its past. The fi, i = 1; � � � ;nx, are assumed to be known
continuous functions. We usually use vector notation to write these equations
in a compact form

x(t) = [x1(t) � � � xnx(t)]
T ; u(t) = [u1(t) � � � unu(t)]

T

f(x(t);u(t)) = [f1(x(t);u(t)) � � � fnx(x(t);u(t))]
T (2)

and rewrite the n �rst-order di�erential equations as one n-dimensional �rst-
order vector di�erential equation

_x(t) = f(x(t);u(t)) (3)

we call (3) the state equation and refer to x as the state and u as the input. It
can be noted that the input vector u may include both the control inputs and
the exogenous or perturbations inputs. The global system consists of a given
number of components and we are interested of estimating on-line the reliability
of one or a group of particular components assumed to be crucial for the safety
of the system. To this end, it is necessary to take into account the operating
conditions because they have a direct in�uence on reliability. Of course, the
operating conditions of a particular component, depend upon the input u and
the state x around which the system evolves. In these conditions, a realistic
reliability model must include the physical process variables i.e. the input u
and the state x. However, this is not su�cient because operational conditions
are constantly changing in time, and this has a direct impact on reliability. It
is then also necessary to take into account the history of operating conditions
under which the system has evolved. For this purpose, one can use a dynamical
failure rate model of following general form :

_�(t) = �(t;x(t);u(t)) (4)

where � represents the failure rate, � a function of the time and of the operating
conditions i.e. (x(t);u(t)). This model must be completed with the dynamical
model describing the evolution in time of the operating conditions i.e. equation
(3). The global dynamical failure-rate model is then given by :

�
_�(t) = �(t;x(t);u(t))
_x(t) = f(x(t);u(t))

(5)
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A particular model of great importance for practical application is as follows :

�
_�(t) = tn(x(t);u(t)) (x(t);u(t))
_x(t) = f(x(t);u(t))

(6)

where  and n are functions of operating conditions. For a constant operating
condition denoted by (x0;u0), the integration of _� with respect to the time leads
to the Weibull law :

8>><
>>:

�(t) =
�(x0;u0)

�(x0;u0)

�
t

�(x0;u0)

��(x0;u0)�1

f(x0;u0) = 0

(7)

with 8<
:

n(x0;u0) = �(x0;u0)� 2

 (x0;u0) =
�(x0;u0)(�(x0;u0)� 1)

�(x0;u0)�(x0;u0)(x0;u0)

(8)

These relations allows us, by using usual techniques of Weibull law para-
metrisation (see [7]), to de�ne point by point the unknown operating condition
functions n(x;u) and  (x;u), from various constant operating conditions, i.e. for
some equilibrium points of the dynamical state space model. The model (6) thus
obtained should make it possible to give in real-time a realistic estimate of the
failure rate. Indeed, it allows us to take into account of the past and present en-
vironments under which a given component has evolved. The main di�culty of
this approach is to �nd an estimate of the unknown operating functions n(x;u)
and  (x;u). This problem is discussed in the following section.

3 Approximation of the operating functions

Consider l operating conditions (xi0;u
i
0), i = 1; � � � ;l. For convenience, we

denote �(t) the instantaneous operating condition i.e. �(t) = [x(t) u(t)]T , and
�i a particular constant operating condition, that is �i = [xi0 ui0]

T . Let � be
the set of considered operating conditions :

� = f�1; �2; � � � ;�lg (9)

For a considered component of the system, and for each operating condition,
we assume that we have the life-time data.

Li = fti1; t
i
2; � � � ;t

i
ni
g (10)

these data can then be used for the determination of the parameters of the
Weibull law for the operating condition characterized by �i :

Li ! (�(�i); �(�i)); i = 1; � � � ;l (11)
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The detail of the procedure on how to obtain �(�i), �(�i), from Li, is well
known and is therefore omitted (on can see [7] for the details). Now, using re-
lation (8) gives the corresponding values of the operating functions, i.e. n(�i)
and  (�i). Finally, the functions n(�(t)) and  (�(t)) are known for a �nite num-
ber of points. Starting from these values, it is possible to construct a staircase
approximation of the continuous functions n(�(t)) and  (�(t)), as shown �gure
1.

� (� (t))

Staircase approximation

� (�1)

� (�2)

� (�3)

Time (hours)

Fig. 1 � Staircase approximation of the operating function  (�(t)).

This approximation can be built by seeking the point �i 2 �, nearest of �(t).
The nearest point �i 2 � of �(t) can be found by solving:

z(t) = argmin
�i2�

jj�(t)� �ijj (12)

where jj�jj denotes the euclidian norm of �. In these conditions we have  (z(t)) =
 (�i) and n(z(t)) = n(�i), if �(t) is about �i, for i = 1; � � � ;l. What means that
we obtain thus a function which is switched between known values accordingly
to the observed operating condition. The complete dynamic failure-rate model
is then given by :8>>>>>>>>><

>>>>>>>>>:

_�(t) = tn(z(t)) (z(t))

_x(t) = f(x(t);u(t))

z(t) = argmin
�i2�

jj�(t)� �ijj; �(t) = [x(t) u(t)]T

�i = [xi0 ui0]
T ; f(xi0; u

i
0) = 0

(13)

Note that this model requires the measurement of all state variables. Howe-
ver, the availability of these variables for direct measurement is a rare occasion
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in practice. In most cases there is a true need for reliable estimation of the
unmeasurable (or unmeasured) state variables, especially when they are used
for process monitoring purpose as is our case here. For this particular task,
a state observer is usually employed, in order to accurately reconstruct the
state variables of the process with the available measurements. In the case of
linear systems, the observer design theory developed by Lunberger [6], o�ers a
complete and comprehensive answer to this problem. The classical Luenberger
observer can be extended to nonlinear systems via extended linearization [1].
Following this approach, consider the nonlinear model of the process (3), and
the following output equation re�ecting the measured variables :

y(t) = Cx(t) (14)

where y 2 Rny is the vector of measured variables and C 2 Rny�nx is known
constant matrix. For this system we consider the nonlinear state estimator:

�
_̂x(t) = f(x̂(t);u(t)) + g(y(t);u(t))� g(ŷ(t);u(t))
ŷ(t) = Cx̂(t)

(15)

where x̂ is the state estimation, ŷ is the estimated output and g(:;:) is a nonlinear
function which must be determined in order to ensure limt!+1 x(t)� x̂(t) = 0.
The details for the determination of the function g(:;:) are given in [1]. Using
this state estimator, the dynamic failure rate model is now given by :

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

_�(t) = tn(ẑ(t)) (ẑ(t))

_̂x(t) = f(x̂(t);u(t)) + g(y(t);u(t))� g(ŷ(t);u(t))

ŷ(t) = Cx̂(t)

ẑ(t) = argmin
�i2�

jj�̂(t)� �ijj; �̂(t) = [x̂(t) u(t)]T

�i = [xi0 ui0]
T ; f(xi0; u

i
0) = 0

(16)

Finally, the failure rate at time t, taking into account the past time-varying
operating condition is given by:

�(t) =

Z t

0

_�(�)d� (17)

This information can then be used to predict reliability under a given future
operating condition. This aspect is discussed in the next section.
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4 Reliability prediction in operation RPO

Reliability is the ability of a system or component to perform its required
functions under stated conditions for a speci�ed period of time. This ability is
usually evaluated in terms of probability and denoted by R(t). The reliability
function and the failure rate are related as:

R(t) = exp

�
�

Z t

0

�(�)d�

�
(18)

Reliability prediction in operation (RPO) can be de�ned as the conditional
probability that a system will be operating properly at a given future time
t+ � , where t is the current time, � 2 [0; �h] and �h the horizon prediction. This
conditional probability can be written as:

R(t+ � jt) =
R(t+ �)

R(t)
=

exp
�
�
R t+�

0
�(�)d�

�

exp
�
�
R t
0 �(�)d�

� = exp

�
�

Z t+�

t

�(�)d�

�
(19)

Note that �(t + �) is unknown for � > 0, but it can be estimated assuming a
given future operating condition, i.e.:

Ri(t+ � jt) = exp

�
�

Z t+�

t

�i(�)d�

�
(20)

where �i is the failure rate associated to the ith operating condition (i =
1; � � � ;l).

5 Numerical example

We consider a device modeled by the following state space equation:

_x(t) =
1

T
(u(t)� x(t)) (21)

where u is the input (u 2 [0; 5]), T is the time constant (T = 1 hour) and x
is the state variable. At the equilibrium, we have x0 = u0. The measurement of
the state variable is then su�cient to characterize the operating condition.

OC LTD �(x0) �(x0) n(x0)  (x0)
x0 2 [0; 1:5] L1 = f238;246;231;103;166g 4.62 217 2.62 2:70� 10�10

x0 2 (1:5; 3] L2 = f222;359;87;154;66g 1.79 201 -0.25 1:07� 10�4

x0 2 (3; 5] L3 = f175;139;92;210;73g 3.00 155 1.00 1:60� 10�6

Tab. 1 - Parametrization of the reliability model.
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In this example, we consider 3 operating conditions for which life time data
are available. Table 1 summarize the parametrization procedure presented in
section 3. For the simulation, we apply to the input of this device successive
step changes so that the system evolves into its entire operating range. Figure
2 shows the corresponding measured output x(t). This measurement, is applied
to the dynamic model (13) which allows us to estimate on-line, the failure rate
and the reliability (see �gure 2).
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Fig. 2 � Output response of the device, failure rate & reliability prediction.

Figure 3 shows the details of the reliability prediction in operation for the
instants : t = 50, t = 100 and t = 150.
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Fig. 3 � Details of the reliability prediction at time t = 50, t = 100, and t = 150.
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From these results, one can see, for instance, that the probability that the
device works properly, at time 100 hours, after it survived at time 50 hours,
is 0.885 under operating condition 3. Given the device survived at time 100
hours, the probability that it works at time 150 hours is 0.71 under operating
condition 3. Similarly, the probability that the device works at time 200 hours,
after it survived at time 150 hours, is 0.39 under operating condition 3. Similar
observations can be done for other operating conditions.

6 Conclusion

The classical reliability method enables us to model the reliability of com-
ponents using life-time data provided, for instance, by a return of experiments.
However, the reliability model thus obtained is valid only under the operating
condition around which the component has evolved. The reliability of a com-
ponent will change under di�erent operating conditions. In order to make relia-
bility prediction over a wide range of operating conditions, we have proposed a
dynamic reliability model able to take into account the history of process run-
ning. This was done by using a di�erential model of failure rate combined with
the state space representation of the process. Simulation studies have shown the
practical applicability of this new concept.
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