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Abstract
The study of the human skin mechanical propersies key point to understand better surgery, skigirag and
pathologies. Skin is a complex medium which is mgnef three layers: the epidermis, the dermis &mal
hypodermis. This composite-like structure presamts@nisotropic nonlinear quasi incompressible vilastic
behaviour which is essentially due to the pecutiamposition of the dermis. Moreover, as the skia liwing
tissue, it must be studied in vivo, hence analisokutions are really difficult to obtain. In th&udy we propose
a new stochastic inverse method for the identificadf the mechanical properties of the skin.
The optimization method we developed is first priegk It is based on an iterative stochastic apptoavhich
ensures the identification of a global extremum.a&tual case study is then analysed: the suctigrexent.
As analytical solutions of this test are not welblvn, an inverse method which is based on compeiso
between experimental data and finite element madgisesented. The elastic components of the skiroaly
considered. The solutions for the Recursive Legeafes and Gauss-Newton's problems are finally et
with the proposed method to conclude on this stundiyto briefly present our future works.

1 Introduction

The mechanical properties of living tissues argatential interest in the identification of certaliseases, for
assessing therapeutic intervention, or for predicthe effect of trauma. Due to its unusual stmggtthe skin
presents a nonlinear viscoelastic anisotropic guasimpressible mechanical behaviour which hasetstbdied
in vivo (Agacheet al. [1]). To identify the skin mechanical propertiesmplex numerical models which lead to
multi-parameter optimization problems are usualyd®d. The optimization algorithms thus need tactethe
solution despite the local minima and stabilizaggvoblems. Moreover, as clinical studies are penéat with a
large number or measurements, the mechanical pteesme=ed to be identified rapidly.

The developed method aimed at identifying the meidad properties of the skin through comparisonisvben
experimental results and finite element modelsuétisn deformation test is performed on the volspext of
the forearm of a subject. A finite element modetto$ test is then created. The optimization predsdinally
used so as to minimize the difference between iperémental and the numerical results. To undertime
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usefulness of the proposed method, comparisons stéihdard Gauss-Newton's and Recursive Least Square
methods are finally drawn for an actual identificatcase.

2 Methods

The proposed method is divided into three stagést Ehe suction experiment is performed and matiele
through the finite element method. A numerical detae which is made up of simulated curves thablat@ned
for different values of the mechanical parametetbén created.

2.1 Thesuction experiment

Thein vivo suction test (Diridollowet al [2]) consists in applying a negative pressuréhatskin surface. In our
case study, this test is performed on the volaeetspf forearm skin, using a Cutometer CM570 (Cger&
Khazaka, Cologne, Germany). The skin is suckedantaperture forming a dome whose deflection isncex
for each step of pressurp . Figure 1.a presents an actual curve which waaimdd for a pressure up to
100mbar, applied at a rate of 20mbar.s
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Figure 1: The suction test. a. The experimentaleun. The finite element numerical model (Theicait
displacements (mm) are presented).

2.2 Thefinite element model

The numerical simulations are performed with theS3IYS™ finite element software. To model a complex
structure such as skin, several assumptions nedx tmade. The skin is considered to be a homogsneou
medium, its structural response is only considérae. Due to the low stress rate, the mass inefietts are
neglected and computations are thus performed @sgsi-static calculation. The geometry is cargid to be
axisymmetrical (Figure 1.b) and the skin was modiele a single layer which thickness is the oneesponding
to the epidermis and the dermis. Indeed, resutim fliterature clearly state that the effects of-debmal
structures can be neglected (Diridolletial. [2]), (Cooket al.[3]). In contrast to studies that account for the
viscoelastic and the anisotropic behaviour of #ia §Khatyr et al. [4]), our approach consists in identifying its
isotropic elastic mechanical properties. Secon@retements with a reduced integration scheme $o agoid
volumetric locking are used for the mesh.
A compressible hyperelastic law, based on an exgntko-Hookean potential (Hendricks al. [5]) was
developed (Equation 1X, and X, are the elastic parameterd, denotes thé" reduced invariant of the right
Cauchy-Green deformation tens@r, and ¥ the compressibility constant of the media. For lEsizains, a
relationshisJ can be drawn between the compredsibiliconstant and Poisson's ratiouv:

Xy

K = 6(1—U /((1+ U)(l—2u))—8/3 X, . Three mechanical parameters thus need to beifiddnt X, , X,
andu.
w =X, (3, -3)+ x. (3, -3), —3)+%(J3 -1f )
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2.3 Theinverse method principle

The main principle of the proposed method lieshim tonstruction of a pre-calculation data basestimelated
space The results of several numerical calculationfatireg to the different combinations of the mecleahi
parameters to be determined, are collected india base. Indeed, clinical studies are performiéud aviarge
number of measurements. With the use of standarisa methods, a finite element computation isireduor
each identification step. Redundant solutions te tlumerical models are thus calculated. In the eptes
procedure, all the finite element models are peméat only one time. Furthermore such experimentaison
usually performed by medical practitioners, henae method needs to be a FEM-free process. Thetiaria
field of the simulated space X;j(Mpa)J[0.01;0.1] per step of 0.01MPH;(Mpa)J[0.1;4.9] per step of 0.3MPa,
vJ[0.2;0.48] per step of 0.04 ap@mbar)[0;100] per step of 2mbar.

The iterative optimization algorithm is then usedninimize the square identification error relatedthe
comparison of simulated and experimental curvesringuthe calculation, non-simulated values can be
identified. They are simply calculated with cubiadrange’s interpolations of the existing data.

2.4 Thestochastic algorithm fundamentals

Many engineering problems can be solved througlimirdtion procedures, i.e. can be seen as the fact o
achieving the best possible result under givenuoistances. The goal of optimization is either tmimize
effort or to maximize benefit which can usually épressed as a function of specific design vargatience
optimization is the procedure which searches ferabnditions that give the maximum or the minimuaiue of

a particular function called objective functionamst function.

In this article a heuristic method to solve thddaing optimization problem is proposed:

Xon = argmin J(x) (2)

Without requiring the derivatives of the cost fuaotJ and without necessarily requiring its mathematical
expression (i.e. the values btan be obtained through simulations or experimefitse setX 0 R" represents
the admissible solutions.

To solve this problem, we adopt the principle deggidn figure 2. The proposed procedure is iteegtand we
denote by, thej" iteration of the algorithm.

; o i1 k=N (] k=N
N: Unlzs;?erzfgfm V(J) _{ kV } = Cost Function { ‘](kv )} k=1
\/ j
(v, V) IV
(\11\7) Evaluation of the

Bounds
lt<—o Ny

Figure 2: Principle of the algorithm.

A uniform random generator is used, which produ@seach iteration, a sequence Nfvectors that are

uniformly distributed between the bounds=[v, - v,]" andV =[w - w]:
v(j)={v', Vv, W 3)
where ' is the k"™ vector generated at the iteration numpery ' = [lei kVni]T, and «v/ is thel™

component ofiy’ (I =1, ,n). This uniform random generator is applied to tbstdunctionJ. Without loss of
generality, we assume that the vectors are ordsrédeir increasing cost function i.e. :

o) <o)< <afv) @
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The principle of the algorithm is to modify the bmis V and V of the uniform random generator until the
minimum of the cost function is reached. Obviousie minimum is characterized by a difference betwthe
bounds close to zero. The given problem is: homedlify the parameters of the uniform random geoeriat
order to achieve the optimum?

To solve this problem we considef best candidates i.&l, candidates that are the more representative of the

optimum. For the iteratiof, the boundsv and V , of the uniform random generator are then evatliate
follows :

v, =n3irlkv.j
e 1 =1..,n (5)
Vi =max«V/

1<k<Nb
where N, is the number of considered candidates. This phaeeis repeated until the euclidian norm of the
differenceV -V is small enough. The result obtained with thicls&stic algorithm is not an exact optimum

but a near optimum which is closely related to nerndf samplefN. The minimum number of samples required
to obtain a reliable near optimum, must be chosgfTascano [6]) (Toscaret al.[7]):

Nzln(l—p)/ln(l—e) (6)

wherep is the confidencep(must be close to 1 e.go =0.99) ande is an accuracye(must be close to 0 e.g.
e=0.01).

2.5 Implementation of the stochastic approach

The fundamentals of the stochastic algorithm wemeglémented in three stages. First, fhaximal andminimal
boundary parameter§ X7, "X7, " X2, "Xz, “v° and "v° are defined. They usually correspond to the
boundary values of the simulated space (Figuree 8. N values of this domain are then randomly chosen
and, for each iteratiorj , their related solution$|{, X! , X3 . U‘) with k =1,---,N are calculated thanks to the
simulated spacés(k X, XJ . 0 ) = S(k X! X2, 0", p ) (Figure 3 step 1). They are finally sorted acamyd

the quadratic erroriE; which is defined in Equation 7, wheneis the number of experimental points and
M=M (pi ) are the experimental measurements. The minimahadmal values of thé\, firts sorted results
are finally selected for each mechanical parameteise the starting point of an other iteratioig(ife 3 step 2).

e =25 n)-sbx. X000 »T o

u i=1

3 Results

To underline the usefulness of the proposed metbodhparisons are drawn with the results of thedsteth
Gauss-NewtonGN) (Bjorck, [8]) and Recursive Least Squaréd.§ methods (Omidi, [9]). To improve its
reliability, theRLStechnique was developed thanks to a forgettingrparer approach\e0.9) (Omidi, [9]) and
was modified through a stabilization process whichsists in running the calculations several fadshe same
curve (Delalleau, [10]). For both th@N and RLS methods, the initial parameters are equal to thallest
boundary values of the simulated space. The caiookwere performed on a Pentium core-duo 1.6GHz.

To check the relevance of the stochastic algori{BMO we performed a test which consists in using csirve
extracted from the simulated space (with known raedal parameters) as if they were experimentakone
(Delalleau, [10]). For each case study, the obthimsults are in accordance with the required petars and
show an error valu& < 0.Jum.

Table 1 presents the results corresponding to kperamental curve (Figure 1.a). For that case stulg
stochastic approach shows the best results whatieeeralue olN is. One can note that everNfpresents high
values, the computation time can decrease if lEsations are needed to reach the convergencere-iga
presents a comparison between the experimentaltlmdsimulated deflection obtained for the idendifie
parameters. It shows that the results are in aeacoal TheGN algorithm stabilizes to erratic parameters and

4
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presents a high computation error. TRESanalyse is more unusual. The calculation canndiil&@ for the
specified convergence criterion, however, for highalues (i.e. C =10°pum with C, :|Ej_l—Ej|) the
convergence can be reached with a low computatiemak E=2.1um). Indeed th&LS convergence shows
oscillating values around the solution. A line-sdatechnique should thus be used for @GN and RLS
computations whereas the stochastic approach aae®ad any.

Step 0 Step 1 Step 2
Initial work space Random values New work space
Myo My — and bfest .sulut.lons - My sy
S S P wy g

M oridl
"

Figure 3: Implementation of the stochastic apprdachiN = 67, N, =8 and two parameters to be identified :
Y, and, .

Several sets of initial values were tested to stimdysensitivity of both th&N and theRLSalgorithms to the
computation initialization. In every case theseodthms do not reach satisfactory solutions. THevance of
the stochastic method was also tested for 50 catipns which correspond to different random samples
(Figure 4). The results show that for an identmabr value, the identified parameters always prete same
order of magnitude. FAX=10" closest variations could be observed. They woirdllf tend to 0 ifN tends
toward the infinity, as the global minimum is readhFinally, the influence of thi, chosen parameters was
also studied. For values under 10, the algorithmreach non reliable parameters whereas for abakes, no
effect of this parameter was noticed.

Method | X&(MPa) Xx¥(MPa) v CPUTis) E[um)
GN 0.016 0.1 0.48 3.2 43
RLS / / / / /

STO N1C 0.025 2.95 0.28 2.3 2
STO N1CP 0.026 3.1 0.26 1.4 2
STO N1C* 0.025 3.06 0.26 15.2 2

Table 1: Identified values for an actual case stu@y 10°um, and N, = 20.

4 Discussion

In this article, a new stochastic approach whicbuess the identification of a global minimum waseleped

and successfully compared with the Gauss-NewtonRewlrsive Least Squares algorithms. In our cas#y st
the GN identification usually reaches the boundary vahiethe simulated space and RReSapproach oscillates
around the solution. This was also tested for sdévether calculations. In most of the cases, idaihti
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conclusions can be drawn. Both these processeknargn to be sensitive to the initial values andtheiit a
particular line-search technique, they may oselkbund local extrema or diverge. For each itemat specific
optimization procedure is thus required. Moreoteese standard methods necessitate to know théurmsion
of the problem and to evaluate its derivatives. &anmd memory consuming calculations which are eqtired
by the stochastic approach are thus performed.

The main advantages of the developed method lis irapidity to converge and in its relevance. ediemany
parameters can be identified easily without neitbemputational divergence nor oscillating valuesrtirer
more, no initial set of values, which constitutegréical stage for most of the optimization proses is
required. The stochastic method is theoreticallg &b reach the global minimum of the problem. Hoere this
requires an infinite numbeM of random samples, hence, the obtained resultsicito® interpreted in terms of
probability. These properties are currently useiiémtify the mechanical parameters of the humam tsikough
more complex behaviour laws and multi-layered madehese works will be presented in a future paper.
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Figure 4: Identified mechanical parameters forgtoehastic technique according to 50 random cases.
C =10°um, N, =20, N =10°.
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