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Abstract 
The study of the human skin mechanical properties is a key point to understand better surgery, skin ageing and 
pathologies. Skin is a complex medium which is made up of three layers: the epidermis, the dermis and the 
hypodermis. This composite-like structure presents an anisotropic nonlinear quasi incompressible viscoelastic 
behaviour which is essentially due to the peculiar composition of the dermis. Moreover, as the skin is a living 
tissue, it must be studied in vivo, hence analytical solutions are really difficult to obtain. In this study we propose 
a new stochastic inverse method for the identification of the mechanical properties of the skin. 
The optimization method we developed is first presented. It is based on an iterative stochastic approach which 
ensures the identification of a global extremum. An actual case study is then analysed: the suction experiment. 
As analytical solutions of this test are not well-known, an inverse method which is based on comparisons 
between experimental data and finite element models is presented. The elastic components of the skin are only 
considered. The solutions for the Recursive Least Squares and Gauss-Newton's problems are finally compared 
with the proposed method to conclude on this study and to briefly present our future works. 

1 Introduction 
The mechanical properties of living tissues are of potential interest in the identification of certain diseases, for 
assessing therapeutic intervention, or for predicting the effect of trauma. Due to its unusual structure, the skin 
presents a nonlinear viscoelastic anisotropic quasi incompressible mechanical behaviour which has to be studied 
in vivo (Agache et al. [1]). To identify the skin mechanical properties, complex numerical models which lead to 
multi-parameter optimization problems are usually studied. The optimization algorithms thus need to reach the 
solution despite the local minima and stabilization problems. Moreover, as clinical studies are performed with a 
large number or measurements, the mechanical parameters need to be identified rapidly. 
The developed method aimed at identifying the mechanical properties of the skin through comparisons between 
experimental results and finite element models. A suction deformation test is performed on the volar aspect of 
the forearm of a subject. A finite element model of this test is then created. The optimization process is finally 
used so as to minimize the difference between the experimental and the numerical results. To underline the 
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usefulness of the proposed method, comparisons with standard Gauss-Newton's and Recursive Least Squares 
methods are finally drawn for an actual identification case. 

2 Methods 
The proposed method is divided into three stages. First the suction experiment is performed and modeled 
through the finite element method. A numerical data base which is made up of simulated curves that are obtained 
for different values of the mechanical parameters is then created. 

2.1 The suction experiment 

The in vivo suction test (Diridollou et al [2]) consists in applying a negative pressure at the skin surface. In our 
case study, this test is performed on the volar aspect of forearm skin, using a Cutometer CM570 (Courage & 
Khazaka, Cologne, Germany). The skin is sucked into an aperture forming a dome whose deflection is recorded 
for each step of pressure ip . Figure 1.a presents an actual curve which was obtained for a pressure up to 
100mbar, applied at a rate of 20mbar.s-1. 

                     

Figure 1: The suction test. a. The experimental curve. b. The finite element numerical model (The vertical 
displacements (mm) are presented). 

2.2 The finite element model 

The numerical simulations are performed with the SYSTUS™ finite element software. To model a complex 
structure such as skin, several assumptions need to be made. The skin is considered to be a homogeneous 
medium, its structural response is only considered here. Due to the low stress rate, the mass inertial effects are 
neglected and computations are thus performed using a quasi-static calculation. The geometry is considered to be 
axisymmetrical (Figure 1.b) and the skin was modeled as a single layer which thickness is the one corresponding 
to the epidermis and the dermis. Indeed, results from literature clearly state that the effects of sub-dermal 
structures can be neglected (Diridollou et al. [2]), (Cook et al. [3]). In contrast to studies that account for the 
viscoelastic and the anisotropic behaviour of the skin (Khatyr et al. [4]), our approach consists in identifying its 
isotropic elastic mechanical properties. Second order elements with a reduced integration scheme so as to avoid 
volumetric locking are used for the mesh. 
A compressible hyperelastic law, based on an extended neo-Hookean potential (Hendricks et al. [5]) was 
developed (Equation 1).1X and 2X are the elastic parameters, iJ  denotes the i th reduced invariant of the right 
Cauchy-Green deformation tensor C , and κ  the compressibility constant of the media. For small strains, a 
relationship can be drawn between the compressibility constant and Poisson's ratio υ : 

( ) ( )( )( ) 11 3821116 XX −−+−= υυυκ . Three mechanical parameters thus need to be identified: 1X , 2X  
and υ . 

 ( ) ( )( ) ( )2

321211 1
2

333 −+−−+−= JJJXJX
κ

W  (1) 

a. b. 
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2.3 The inverse method principle 

The main principle of the proposed method lies in the construction of a pre-calculation data base: the simulated 
space. The results of several numerical calculations, relating to the different combinations of the mechanical 
parameters to be determined, are collected in this data base. Indeed, clinical studies are performed with a large 
number of measurements. With the use of standard inverse methods, a finite element computation is required for 
each identification step. Redundant solutions to the numerical models are thus calculated. In the present 
procedure, all the finite element models are performed only one time. Furthermore such experimentation is 
usually performed by medical practitioners, hence our method needs to be a FEM-free process. The variation 
field of the simulated space is: X1(Mpa)∈[0.01;0.1] per step of 0.01MPa, X2(Mpa)∈[0.1;4.9] per step of 0.3MPa, 
ν∈[0.2;0.48] per step of 0.04 and p(mbar) ∈[0;100] per step of 2mbar. 
The iterative optimization algorithm is then used to minimize the square identification error related to the 
comparison of simulated and experimental curves. During the calculation, non-simulated values can be 
identified. They are simply calculated with cubic Lagrange’s interpolations of the existing data. 

2.4 The stochastic algorithm fundamentals 
Many engineering problems can be solved through optimization procedures, i.e. can be seen as the act of 
achieving the best possible result under given circumstances. The goal of optimization is either to minimize 
effort or to maximize benefit which can usually be expressed as a function of specific design variables. Hence 
optimization is the procedure which searches for the conditions that give the maximum or the minimum value of 
a particular function called objective function or cost function. 
In this article a heuristic method to solve the following optimization problem is proposed: 

 ( )xJx
x

opt
X∈

= minarg  (2) 

Without requiring the derivatives of the cost function J and without necessarily requiring its mathematical 
expression (i.e. the values of J can be obtained through simulations or experiments). The set nRX ⊂  represents 
the admissible solutions.  
To solve this problem, we adopt the principle depicted in figure 2. The proposed procedure is iterative, and we 
denote by j, the j th iteration of the algorithm. 
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Figure 2: Principle of the algorithm. 
 
A uniform random generator is used, which produces, at each iteration, a sequence of N vectors that are 

uniformly distributed between the bounds [ ]T

nvvV L1=  and [ ]nvvV L1= : 

 ( ) { }j
N

jj VVVj ,,,V K21=  (3) 

where j
kV  is the kth vector generated at the iteration number j : [ ]Tj

nk
j

k
j

k vvV L1= , and j
lk v  is the l th 

component of j
kV  ( )nl ,,L1= . This uniform random generator is applied to the cost function J. Without loss of 

generality, we assume that the vectors are ordered by their increasing cost function i.e. : 

 ( ) ( ) ( )j
N

jj VJVJVJ <<< L21  (4) 
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The principle of the algorithm is to modify the bounds V  and V  of the uniform random generator until the 

minimum of the cost function is reached. Obviously, the minimum is characterized by a difference between the 
bounds close to zero. The given problem is: how to modify the parameters of the uniform random generator in 
order to achieve the optimum? 
To solve this problem we consider Nb best candidates i.e. Nb candidates that are the more representative of the 

optimum. For the iteration j, the bounds V  and V , of the uniform random generator are then evaluated as 

follows : 

 nl
vv

vv

j
lk

bNk
l

j
lk

bNk
l

,,,
max

min
K1

1

1 =
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

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=

=

≤≤

≤≤  (5) 

where Nb is the number of considered candidates. This procedure is repeated until the euclidian norm of the 
difference VV −  is small enough. The result obtained with this stochastic algorithm is not an exact optimum 

but a near optimum which is closely related to number of samples N. The minimum number of samples required 
to obtain a reliable near optimum, must be chosen as (Toscano [6]) (Toscano et al. [7]): 

 ( ) ( )eN −−≥ 11 ln/ln ρ  (6) 

where ρ is the confidence (ρ must be close to 1 e.g. 990.=ρ ) and e is an accuracy (e must be close to 0 e.g. 

010.=e ). 

2.5 Implementation of the stochastic approach 

The fundamentals of the stochastic algorithm were implemented in three stages. First, the Maximal and minimal 
boundary parameters 0

1XM , 0
1Xm , 0

2XM , 0
2Xm , 0υM  and 0υm  are defined. They usually correspond to the 

boundary values of the simulated space (Figure 3 step 0). N  values of this domain are then randomly chosen 
and, for each iteration j , their related solutions ( )j

k
j

k
j

k XX υ,,S 21  with Nk ,,L1=  are calculated thanks to the 
simulated space ( ) ( )i

j
k

j
k

j
k

j
k

j
k

j
k pXXSXX ,,,,,S υυ 2121 =  (Figure 3 step 1). They are finally sorted according to 

the quadratic error jE  which is defined in Equation 7, where u is the number of experimental points and 
( )ipM=M  are the experimental measurements. The minimal and maximal values of the bN  firts sorted results 

are finally selected for each mechanical parameters, to be the starting point of an other iteration (Figure 3 step 2). 
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3 Results 
To underline the usefulness of the proposed method, comparisons are drawn with the results of the standard 
Gauss-Newton (GN) (Björck, [8]) and Recursive Least Squares (RLS) methods (Omidi, [9]). To improve its 
reliability, the RLS technique was developed thanks to a forgetting parameter approach (λ=0.9) (Omidi, [9]) and 
was modified through a stabilization process which consists in running the calculations several folds on the same 
curve (Delalleau, [10]). For both the GN and RLS methods, the initial parameters are equal to the smallest 
boundary values of the simulated space. The calculations were performed on a Pentium core-duo 1.6GHz. 
To check the relevance of the stochastic algorithm (STO) we performed a test which consists in using curves 
extracted from the simulated space (with known mechanical parameters) as if they were experimental ones 
(Delalleau, [10]). For each case study, the obtained results are in accordance with the required parameters and 
show an error value µm10.<E . 

Table 1 presents the results corresponding to the experimental curve (Figure 1.a). For that case study, the 
stochastic approach shows the best results whatever the value of N is. One can note that even if N presents high 
values, the computation time can decrease if less iterations are needed to reach the convergence. Figure 1.a 
presents a comparison between the experimental and the simulated deflection obtained for the identified 
parameters. It shows that the results are in accordance. The GN algorithm stabilizes to erratic parameters and 
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presents a high computation error. The RLS analyse is more unusual. The calculation cannot stabilize for the 
specified convergence criterion, however, for higher values (i.e. µm10 2−=C  with jjj EEC −= −1 ) the 
convergence can be reached with a low computational error (E=2.1µm). Indeed the RLS convergence shows 
oscillating values around the solution. A line-search technique should thus be used for the GN and RLS 
computations whereas the stochastic approach does not need any. 
 

 

Figure 3: Implementation of the stochastic approach for 67=N , 8=bN  and two parameters to be identified : 

1Y and 2Y . 
 
Several sets of initial values were tested to study the sensitivity of both the GN and the RLS algorithms to the 
computation initialization. In every case these algorithms do not reach satisfactory solutions. The relevance of 
the stochastic method was also tested for 50 computations which correspond to different random samples  
(Figure 4). The results show that for an identical error value, the identified parameters always present the same 
order of magnitude. For N=104 closest variations could be observed. They would finally tend to 0 if N tends 
toward the infinity, as the global minimum is reached. Finally, the influence of the Nb chosen parameters was 
also studied. For values under 10, the algorithm can reach non reliable parameters whereas for above values, no 
effect of this parameter was noticed. 
 

Method ( )MPa1
idX  ( )MPa2

idX  idυ  CPUT(s) ( )µmE  

GN 0.016 0.1 0.48 3.2 43 
RLS / / / / / 

STO N=102 0.025 2.95 0.28 2.3 2 
STO N=103 0.026 3.1 0.26 1.4 2 
STO N=104 0.025 3.06 0.26 15.2 2 

 
Table 1: Identified values for an actual case study, µm10 5−=C , and 20=bN . 

4 Discussion 
In this article, a new stochastic approach which ensures the identification of a global minimum was developed 
and successfully compared with the Gauss-Newton and Recursive Least Squares algorithms. In our case study, 
the GN identification usually reaches the boundary values of the simulated space and the RLS approach oscillates 
around the solution. This was also tested for several other calculations. In most of the cases, identical 
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conclusions can be drawn. Both these processes are known to be sensitive to the initial values and, without a 
particular line-search technique, they may oscillate around local extrema or diverge. For each iteration, a specific 
optimization procedure is thus required. Moreover, these standard methods necessitate to know the cost function 
of the problem and to evaluate its derivatives. Time and memory consuming calculations which are not required 
by the stochastic approach are thus performed. 
The main advantages of the developed method lie in its rapidity to converge and in its relevance. Indeed, many 
parameters can be identified easily without neither computational divergence nor oscillating values. Further 
more, no initial set of values, which constitutes a critical stage for most of the optimization processes, is 
required. The stochastic method is theoretically able to reach the global minimum of the problem. However, this 
requires an infinite number N of random samples, hence, the obtained results should be interpreted in terms of 
probability. These properties are currently used to identify the mechanical parameters of the human skin through 
more complex behaviour laws and multi-layered models. These works will be presented in a future paper. 
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Figure 4: Identified mechanical parameters for the stochastic technique according to 50 random cases. 
µm10 5−=C , 20=bN , 310=N . 
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