
 

   
Abstract⎯The industrial demand for higher reliability of 

various components is one of the main flywheels of the 
research and development in the field of modelling of complex 
phenomena. There is a need to characterize the wear 
behaviour of the interface under fretting wear conditions in 
ball bearing application. Pre-treated experimental data was 
used to determine the wear of contacting surfaces as a 
criterion of damage that can be useful for a life-time 
prediction. The benefit of acquired knowledge can be crucial 
for the industrial expert systems and the scientific feature 
extraction that cannot be underestimated. Wear is a very 
complex and partially-formalized phenomenon involving 
numerous parameters and damage mechanisms. To correlate 
the working conditions with the state of contacting bodies and 
to define damage mechanisms different techniques are used. 
The use of our approaches in the prediction of the response of 
the system to different test conditions is validated. Two 
physical models, based on Archard and Energetic approach, 
are compared with Artificial Neural Network model and 
Genetic Programming. Decisive factors for a comparison of 
used AI techniques are their: performance, generalization 
capabilities, complexity and time-consumption. Optimization 
of the structure of the model is done to reach high robustness 
of field applications. Finally, application of the wear level 
information to forecast a probability of damage is presented. 

Index Terms⎯multisensor classification, neural classifier, 
quality assessment 
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I. INTRODUCTION 

AI is not only seen in computer science and engineering 
[1] but as well it is studied and applied in various different 
sectors such as psychology, philosophy, neuroscience, 
linguistics, economics, control theory, probability, 
optimization and logic [2]. It can be applied to model 
complex relationships between inputs and outputs or to find 
patterns in data. Two different innovative techniques that 
go beyond the standard AI methods typically considered as 
Computational Intelligence (CI): Artificial Neural Network 
and Genetic Programming are presented and validated in 
this paper. The greatest advantage of Artificial Neural 
Networks (ANNs) is their ability to be used as an arbitrary 
function approximation mechanism which 'learns' from 
observed data. However, using them is not so 
straightforward and relatively good understanding of the 
underlying theory is essential. A review of many 
engineering applications of that technique was presented by 
Bhadeshia [3]. Broad area where ANN was successfully 
implemented starts from the prediction of cracking of 
welds, overall strength of superalloys, structural 
transformations in steels through bearing fault detection [4] 
and many other applications. 

Artificial Neural Networks, which are trainable systems 
mainly used for pattern recognition, are similar to the 
biological neural networks in the sense that the functions 
are performed collectively and in parallel by the units and 
no clear delineation of subtasks, to which various units are 
assigned, exists. In principal, the neural network model can 
be used to examine the effect of an individual input on the 
output parameter, especially when it is extremely difficult 
(or costly) to do it experimentally. 

As well as Artificial Neural Networks the Genetic 
Programming (GP) bases on a biological principle as it is a 
variant of Evolutionary Algorithms (EA). The aim of using 
this method is to find a representation (a model) of a 
problem, which cannot be previously predefined by set of 
parameters and its advantage over traditional methods, is an 
automatic optimization of functional form and the 
coefficient values.  Time series prediction [5], classification 
tasks [6] and a machine control [7] are the fields where GP 
is found to be interesting and robust technique. 

Most of the publications that are using AI to model wear 
deal with presenting the wear response of a tool during 
different machining procedures (i.e. turning, milling or 
boring). The influence of the machining parameters on 
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wear of machine cutting tools (i.e. tool flank wear) under 
various operational conditions (cutting speed, depth of cut 
etc.) was studied by means of ANN [8, 9, 10] and GP [11, 
12, 13] to find the balance between the wear of the tool and 
the efficiency of the machining procedure. In general it was 
found that neural networks deduce the relationship between 
variables, including any interactions, while genetic 
programming is showing its best in multi-objective 
optimization. In complicated cases, where a lot of variables 
are present, examination of the predictions reveals 
quantitatively and qualitatively interesting interactions. 

In the present study the comparison between the physical 
models, based on regression analysis, and an empirical 
models, based on artificial neural network and genetic 
programming is shown. As the neural network is a 
regression method of which linear regression is a subset 
(Fig. 1) it is possible to describe the behaviour by the 
equation that is precise and reproducible for given set of 
inputs. 

Fig. 1.  (a) Neural network representation of linear regression and (b) 
non-linear representation. 

 
The problem of fretting damage in bearing-related 

applications is used as a case study. Bearing quality is 
increasingly determined by its acoustical and vibrational 
performance and the bearing is always in the transmission 
path of vibrations generated between the shaft and the 
bearing housing [14]. Due to small oscillatory movements 
the interface can get fretted and then the life of the bearing 
predicted by simple fatigue [15] is shortened. The wear 
response at the interface is modelled and the empirical 
models, base on the data gained from the fretting tests, are 
created. The AI models are compared with the friction 
dissipated energy and Archard approaches, which represent 
the physical description of the fretting wear behaviour, to 
validate the approach. 

II. EXPERIMENTAL PROCEDURE 
Tests were carried out using specific Laboratory of 

Tribology and Dynamics of Systems fretting wear 
apparatus (Fig. 2). An electrodynamic shaker induced the 
reciprocating movement with a constant frequency of 10 
Hz. The upper specimen (AISI 52100 - chromium steel 
ball) rubbed against the lower fixed flat sample (AISI 
52100) to simulate ball-on-flat dry point-contact conditions 
[16]. 

The spherical samples used for the experiments had 2 
different grades, which resulted in different average 
roughness of the surface ( aR ). Flat surfaces were ground 
and subsequently polished to reach similar roughness 
values. Before being tested, the specimens were cleaned 
with acetone. 

 
Fig. 2.  The scheme of the fretting rig. 
 

The normal force (P) was kept constant during the test, 
while the tangential force (Q) and displacement ( δ ) were 
recorded. A fretting test program was carried out by 
applying a normal force and displacement amplitude 
according to the test matrix (Table I). It should be 
mentioned that a large spectrum in terms of displacement 
amplitude, pressure and test duration was used in 
comparison with the work of Ramesh et al. [17]. It allowed 
promoting both gross slip and partial slip conditions. Tests 
were conducted in a closed chamber in which the relative 
humidity and the temperature could be controlled. The 
humidity level was measured as close as possible to the 
contact and all the tests were conducted at 40±5% of 
relative humidity (HR) level and at 23±2°C temperature. 

III. PRESENTATION OF THE MODELS USED 

A. Physical models – regression analysis 
 

Three wear approaches are considered in this work:  
 
1. The first one is the classically Archard’s wear criterion 
[18] used commonly during the second half of the 20th 
century. The wear volume versus the product of the normal 
force (P) and the sliding distance (S) is presented. 
Transposed to the gross slip fretting condition, the 
Archard’s product is expressed by the following 
relationship: 

 
(1) 

 
with N the number of cycles and giδ  the sliding amplitude 
of cycle i. The Archard’s approach does not take into 
account the friction coefficient which is an important 
parameter of the stressing loading (strongly depending on 
third body effect) and consequently of the material damage 
evolution. 

 
2. To integrate the friction coefficient effect in the wear 

analysis, the wear volume can be compared with the 
accumulated friction work dissipated through the interface 
(the friction coefficient is directly proportional to dissipated 
energy) [19]. The dissipated energy corresponds to the 
accumulated energy determined from the sum of fretting 
cycle area: 

 
(2) 

 
3. Finally, an extended approach, which is combining 

sliding amplitude and cumulated dissipated energy (wear 
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) was applied by Fouvry et al. [20] to 

describe wear behaviour of titanium alloys which are 
sensitive to adhesion. Indeed, due to adhesion mechanisms, 
a significant part of the dissipated energy is consumed to 
carry out and eliminate the third body from the interface. 
The direct connection between the debris flow and the 
interfacial relative sliding can explain why the dissipated 
energy has to be weighted with sliding amplitude for 
adhesive material. The studied contact (chromium steel-
chromium steel) is not an adherent contact so this method is 
not applied for physical description of the system.  

Linear regression analysis was performed for both 
Archard and energetic approach. From Archard wear 
parameter (k) and energy wear parameter ( α ) theoretical 
values of wear were calculated and the graphs presenting 
theoretical vs. experimental wear are presented on Fig. 3. 

 

 
Fig. 3.  Experimental wear volume compared with theoretical one a) from 
Archard and b) dissipated energy approach. 
 
The results of both models are similar and the variance of 
the method is almost the same for two approaches. It 
confirms that regression analysis normally gives similar 
responds when the assumed dimensionality of two different 
approaches is the same (linearity of Archard and energy 
wear approaches). Similar results obtained from physical 
modelling of Archard and energy dissipation can be 
explained by the fact that the studied interface displays 
stable friction behaviour. If the friction coefficient remains 
constant the two approaches are indeed equivalent. To 
increase the searching space and to find the optimal 
solution of the problem without narrowing down the range 
of the possible outcomes the AI is used. 
 

B. Static ANN model 
 

Pre-processing has two steps: first all the data was 
normalized and then random noise was added/deducted 
to/from the normalized data. Every measurement is 
encumbered with errors, there can be systematic errors 
caused by the fact that measurement method does not take 

into account influential parameter(s) and there are also 
random errors normally caused by the sensitivity and 
resolution of the method and user-measuring instrument 
interaction. First step to prepare both variable and 
invariable test datasets is the regularization process. 
Practical reasons for including regularization are twofold: 
1) regularization overcomes numerical sensitivity in the 
parameter estimation; and 2) in the presence of noise in the 
observed values of the outputs, regularization acts as low 
pass filter. 

After PCA four inputs were chosen as most meaningful 
and having the highest influence on the final value: 
pressure, amplitude of displacement, number of cycles and 
roughness. 

A normal additional random noise (with different 
magnitude for different cases studied) was added to the 
data in order to ensure that the network is able to perform 
correct predictions for different studied conditions (e.g. the 
environmental conditions are controlled during the test but 
it is impossible to keep the constant and strict value, so 
temperature and humidity are kept in the range of about ± 
5% of uncertainty). This additional random noise was used 
as well to enlarge the data set for training of the network. 

A commercial Neural Network Toolbox was used for 
designing and validation. For visualization and the control 
of the robustness of the model a multidomain simulation 
platform was used. The structure of the network that was 
found to be the best one, when it comes to the training and 
validation error, is a 3-layer feed-forward network with 4 
neurons in input layer, 3 neurons in hidden layer and one in 
output layer (Fig. 4). 

For the first two layers, the transfer function used was 
sigmoidal tangent (tansig) and for the last layer linear 
function was used (purelin). The network was trained with 
noisy data and real data was used for the early stopping of 
training. The initial weights were randomly chosen and for 
training of the network backpropagation is used to calculate 
the Jacobian jX of performance PERF with respect to the 
weight and bias variables X. Each variable is adjusted 
according to Levenberg-Marquardt. This is a non-adaptive 
training, which uses interpolation between gradient-based 
methods and Gauss-Newton one with iterative recursive 
algorithm. 

This ensured that the network has good generalization 
capabilities as it shows small error of prediction for first-
time seen data. 

 

 
Fig. 4.  Scheme of the structure of neural network used for the prediction 
of fretting wear. Details have been omitted for simplicity. 
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C. Genetic Programming model 
 

Genetic Programming API that bases on a plug-in 
structure was developed with the Java language. To reduce 
the search space, which is straightforward with lower 
computational cost, strongly typed GP was used. For fast 
and efficient calculation a divide and conquer strategy [21] 
and Hyper-Volume Error Separation (HVES) [22] were 
implemented. 

Normalized data was used for optimization of the GP 
parameters and final calculations. All the calculations were 
performed with the use of a standard strategy of the 
generation growth. Fitness function used was scaled mean 
square error (ScaledMSE – MSE divided by the true 
parameter value and expressed in percentage) and gives 
information about the error variance, which discriminates 
good candidates from bad ones. Ramped half-and-half 
method was used as a generation algorithm for initialization 
of the population of the individuals. Half of the individuals 
is a result of grow method (a tree of arbitrary depth 
generated by selecting terminals or functions according to 
uniform probability distribution) and the second one is 
produced by full method (the functions are only selected 
for the nodes until the tree size reaches specific depth, right 
after that terminals are selected), as the grow fraction was 
fixed at value of 0.5. Survival-of-the fittest mechanism uses 
an idea of elitism and only the best candidate (with the 
highest fitness from the ones that take place in the 
tournament) is copied to the next generation. 

The parameters of the variation: duplication, crossover 
and mutation (Table I) and the size of the population and 
maximum generation number (Table II) were optimized to 
get the highest mean fitness (lowest Scaled MSE) of the 10 
runs with respect to calculation cost. 

TABLE I 
OPTIMIZATION OF PARAMETERS OF VARIATION WITH RESPECT TO THE 

SCALEDMSE 

 
 

TABLE II 
OPTIMIZATION OF THE POPULATION SIZE (PS) AND MAXIMUM 

GENERATION NUMBER (MGN) WITH RESPECT TO SCALEDMSE AND 
COMPUTATIONAL COST 

 

It was found that parameter settings presented in Table III 
result in calculation time lower than 10 minutes with the 
ScaledMSE value of about 1%. 

TABLE III 
PARAMETER SETTINGS 

 
 
Terminal sets and functions used are presented in Table IV. 
Extended description of the technique employed in this 
case study was presented in [23]. 

TABLE IV 
TERMINALS AND FUNCTIONS SETS 

 

IV. RESULTS AND DISCUSSION 
 
It becomes clear that the prediction from ANN and GP 

model follows data much more closely than the multiple 
regression analysis (MRA) (Fig. 5, Fig. 6). For the model 
based on Archard’s approach the mean relative error was 
found to be 5.1% and for the energy dissipation model the 
value of the error was a little smaller – 4.8%. 

Artificial neural network model is showing very good 
correlation with experimental data as the mean relative 
error came to 1.8% (Fig. 5). Moreover, even smaller error 
is found for GP as it does not exceed 1.5% (Fig. 6). 

 
Fig. 5.  Experimental wear volume compared with the results of ANN 
predictions. 
 
It is valuable to verify this result with the work of Ramesh 
et al. [17] by comparing the relative mean error as well as 
the spectrum of studied conditions. The calculated mean 
relative error presented in [17] for the predicted wear loss 
was 4.3% which is almost 3 times higher than in the present 
study, where the dimensionality of the problem is higher as 
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Ramesh used only two inputs in his model (5 treatment 
types and 3 different applied loads) and presented the 
results only for one constant value of slip amplitude (60±3 
µm) and constant number of cycles (100 kcycles). 

 
Fig. 6.  Experimental wear volume compared with the results of GP 
predictions. 
 

As mentioned earlier, the difference between the AI and 
MRA lies mainly in nonlinear regions, where 
underprediction takes place. Big differences between the 
prediction and the experimental wear in the range of high 
values of wear were found for MRA (Fig. 3). This could be 
due to the fact that both AI analyses are able to map the 
data between higher dimensional spaces and the 
dimensionality of the problem does not need to be known 
(as it is totally necessary in classical regression analysis).  

In [8] regression analysis is compared with neural 
network technique for the modelling of the tool wear 
during the composites machining and similar comparison 
was made in [24] for fretting wear prediction of short fibre 
reinforced polymeric bearing materials. The published 
results do agree with the ones from the present study that 
both techniques are giving satisfactory outcomes and that 
difference between them is quite marginal. Thus, neural 
networks have proven to be able to further improve the 
performance and to discover easily the patterns and mutual 
correlations in data. Moreover, for more severe conditions 
and when the data is not easily available for all studied 
parameters the regression analysis is prone to over- or 
underestimation of wear value, while optimally scaled 
neural network can predict the behaviour of the system 
correctly. In the light of the substantial wear volume 
measurement error, even relatively uncertain predictions 
are found to be helpful in the tribological investigation and 
material structure optimization. Unfortunately, there are 
only a few publications describing the usefulness of GP in 
the field of wear prediction [25], but the results presented 
in this paper are showing that it can be a robust tool for 
fretting damage prediction. Future investigations should 
take into account the possibility to introduce the units to the 
model, which can make the resulting equation physically 
meaningful (no need for normalization of data). 

V. APPLICATION OF THE WEAR LEVEL INFORMATION TO 
FORECAST THE PROBABILITY OF DAMAGE 

 
The information of the wear level obtained using the neural 
network model can be used in order to provide a forecast of 
the future reliability for a given moment τ+t , where τ  

represents the horizon of prediction and t the current 
moment. Indeed, let sV  be a threshold of unacceptable 
wear involving the failure of the system. The principle 
consists in determining if the future wear level, evaluated at 
time τ+t , is higher or equal to the given threshold sV . Of 
course this forecast cannot be carried out in a deterministic 
way, it is solely possible to give an interval of the possible 
values for wear, in other words, it will be solely possible to 
give a probability of failure related to the statistical 
characteristics of the predictor used. The probability of 
failure at time τ+t , can then be defined as: 

 
(3) 

where ))t(V̂(f τ+  represents the probability density 
function of the predictor for the  considered time τ+t . 
Figure 1 illustrates the principle of forecast of the 
probability of failure; this one is measured by the hatched 
area. 

 
Fig. 7.  Forecast of the probability of failure. 
 
Let ( ) ( )]tV̂[Etm τ+=τ+ and ( ) ( )]tV̂[Vart2 τ+=τ+σ , be 
respectively the mean and the variance of the level wear 
estimation given by the predictor at time τ+t . Assuming a 
normally distributed law for the estimate, the probability of 
failure can be evaluated as follows: 

 
(4) 

The prediction at time τ+t  of the wear level can be done 
via the predictor known as the exponential smoothing 
method. Holt’s method of smoothing is also known as the 
double exponential smoothing (DES). The procedure is 
used for data that exhibits a piecewise linear trend. Let ( )tb  
be the growth rate at time t and both the level and growth 
rate are updated with the smoothing equations: 

 
(5) 

 
where α  and β  are smoothing constants between 0 and 1. 

A τ -step ahead forecast from t for ( )τ+tV̂   is: 
(6) 

 
From [26], the τ -step ahead forecast error variances in 
Holt’s smoothing procedure can be estimated using: 
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(7) 

where 2
1s  is the average of the squared 1-step forecast 

errors: 
 

(8) 

TABLE V 
WEAR DATA AND 1-STEP AHEAD FORECAST 

 
 

As an example, consider the data set obtained via neural-
network estimator of wear volume (cf. Table V, column 1 
to 3). We will fit a double smoothing model with 8.0=α  
and 05.0=β . These are the estimates that result in the 
lowest possible error when comparing the original series to 
one step ahead at a time forecasts. The chosen starting 
values are ( ) ( ) 79.01V1l == and ( ) ( ) ( ) 12.01V2V1b =−= . 

The smoothed results for the example are given in 4 th  
column of table V. The last column gives the corresponding 
1-step forecast error. The MSE for DES model is then 
computed as follows: 

 
(9) 

 
 

 
Fig. 8.  Forecast of wear data. 
 

A plot of these results is presented in Figure 8, which 
shows also the predicted values for index 9t = (i.e for a 
number of cycles of 2250) to 15t = (i.e for a number of 
cycles of 3750). In addition, this figure shows the 
probability so that ( ) }V8V̂Pr{ s≥τ+ , with τ  = 1,...,5 and 

2Vs = . 

For instance the probability so that ( ) 211V̂ ≥  is 0.74. 
With this result we can then admit 500 cycles before the 
wear volume exceed the threshold 2Vs =  with a 
probability 0.74. 

VI. CONCLUSIONS 
 
Both AI techniques used are showing better results as 

physical approaches. Influence of various mechanical 
parameters on the response of the network was evaluated 
and is in good agreement with the physical understanding 
of fretting phenomenon. The superiority of Artificial 
Intelligence methods over classical statistical ones has been 
confirmed by: 

- 3 times lower relative mean error of the ANN model 
and higher stability for all studied conditions in comparison 
with physical approaches (Archard and energy dissipation).  

- Especial usefulness when good simulators to test the 
performance of candidate solutions are available, but no 
methods to directly obtain good solutions exist. 

- Robustness when the conventional mathematical 
analysis (e.g. MRA) cannot provide analytic solutions. 
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